AD-A269 782
MU EAREL

THE DEVELOPMENT OF AN AUTOMATED COGNITIVE TASK
ANALYSIS AND MODELING PROCESS FOR INTELLIGENT
TUTORING SYSTEM DEVELOPMENT

RIlC
S“%;g “0

KENT E. WILLIAMS
VIRGINIA TECH

FINAL REPORT

August 1, 1993

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This research was sponsored by the Manpower Personnel and Training Program,
Office of Naval Research under Contract Number N06(14-91-J-5-1500.

Approved for Public Release: Distribution Unlimited.

93-217 <
T Nllll'ﬂllh <

THE DEVELOPMENT OF AN AUTOMATED COGNITIVE TASK
ANALYSIS AND MODELING PROCESS FOR INTELLIGENT
TUTORING SYSTEM DEVELOPMENT

Azcesior For \

L R

NTIS CRA%I U
Sl

KENT E. WILLIAMS Lt e
VIRGINIA TECH S

FINAL REPORT

August 1, 1993 Ot un !

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This research was sponsored by the Manpower Personnel and Training Program,
Office of Naval Research under Contract Number N00014-91-J-5-1500.

Approved for Public Release: Distribution Unlimited.

Form Apprcvet
REPORT DOCUMENTATION PAGE

OMm8 No J/04.0148

Fal T 2 ~e - AT T 3 ev3GE | T Tul D7 CSDOrAE N LGING TRE M TGl Sy @w R FAL LTy L84t m <3 414l F G 2ard ot
2.00:C 2007 ~g Turgen "I iy ;;ﬂ:';d"e;'w:’:‘:;"g,,:;::.:?.‘::,,f.': ?.:r':..,a Aot tcreation teng Imments raqarding (K4 Buiden syt ~ate 3¢ e e ngen ey
Jatenng Ing Mgt —’;ﬂ 93_3, 3 § eton ;: TAQUEITG TR DurIEn TT N MRIAGIIN eddAuacters Seric®s Jirectorate for ﬁ'e/_'"l!rcn Soeratary '.'"" 'm‘n‘r A wess
e ”?”(:!’?24 "iugq'tg'n“q?x 1'1‘424'302 1eG T e 0 ce 3P gragement 400 JUAGET PI0@rwOrK Redyction Project (3708-3 A8) Aawvrgrin ¢ [T6C)
JavisreGrway 3y iT4 G I Pl]
1. AGENCY USE ONLY {Leave biank) 2. REPORT DATE 3. ?ﬁPORT TyP€ ANO OATES COVERED

August 1, 1993 Final Report: March 1991-August
. FUNDING NUMBERS

4. TITLE AND SUBTITLE 5

The Development of an Automated Cognitive Task Analysis
and Modeling Process for Intelligent Tutoring System
Development

N00014~91-3-5-1500
NR 4428031-0}

6. AUTHQOR(S)

Kent E. Williams

8. PERFORMING ORGANIZATION
7.\&;§RFOFM!NG 'gRGgNIZATION NAME(S) AND ADDRESS{ES) REPORT NUARER
irginia Tec

Dept. of Industrial and Systems Engineering _
1900 Kraft Drive

Blacksburg, VA 24060

3. SPONSORING ; MONITORING AGENCY NAMELS) AND ADDRESS(ES) 10. i;‘g',:z‘,,’“;’;&g,?‘,",:“‘,‘,&;‘;:‘i
Department of the Navy §.0. Code 342Cs
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5660

11. SUPPLEMENTARY NOTES

. 3 I 2]
12a. OISTRIBUTION ; AVAILABILITY STATEMENT 12b. DISTRIBUTION CO

Approved for Public Release: Distribution Unlimited

13, ABSTRACT (Maximum 200 words)
Studies have shown that 98% of students w
Students in the traditional classroom.

development of computerized intelligent
related to cognitive learning and the co
and a student, Intelligent tutoring sys
in what can be learned in a given period
computer aided instruction in Navy tasks,

computerized tutors is a model of the knowledge which makes up the cognitive task
to be learned by a student. Creating these cognitive models requires an
extensive analysis.of the task knowledge. This process is expensive yet

critical to the success of these tutors. This research has produced a software
tool which interacts with a subject matter expert and conducts an analysis of
his/her knowledge, building the needed cognitive task model for use in
intelligent tutoring system development. An evaluation of the system was
conducted to determine the degree of variation in models generated by experts

ith private tutors do better than

This has initiated research and the
tutoring systems based upon research
mmunication of knowledge between a tutor
tems have demonstrated a 65% improvement
of time as compared to traditional

The principle component of these

on a specific highly proceduralized task. The subject genera a

18. NUMBER OF PAGES
1602gf¥q;gnggsk Analysis, Cognitive Simulation Modeling 119
Intelligent Tutoring Systems, GOMS, Human Systems Interaction 6 PRICE CODE
Transfer of Training, Training Time Prediction

TV Tl TRACT
17. SECURITY CLASSIFICATION 18. SEC?RI‘I’Y CLASSIF!_CATION 19. %icz:%fgSSlleTION 20. LIMITATION OF ABS C
OF REPQRT QF TRIS PAGE ')
Unclassified Unclassified Unclassified Unlimited
' Standard Form 298 Rey 2-89)
NSN 7540-01-280-5500 ‘;;?(‘%gﬂ 3 Form 238 Re

compared to 3 model generated by a cognitive analyst. The results demonstrated a high degree of
consistency in the models developed between subjects although subjects tended to organize their
knowledge of procedures into units of differing size. The subject models as compared to that model
generated by a cognitive analyst, showed considerable agreement except that subject matter experts tended
not to describe mental operations involved in the task as frequently as did the cognitive analyst. Such
mental operator descriptions are critical to developing cognitive task models for predicting the execution
time of a procedure when creating models of human computer interaction and when predicting training
time from these models. On the other hand. many primitive mental operations such as adding and
deleting information in working memory or retrieving and storing information in long-term memory are
abstractions of the cognitive analyst. These operations would not occur in task descriptions of curriculum
except for curriculum in cognition. Therefore, the absence of description of mental operators on the part
of subject matter experts when explicating knowledge about their task does not limit the aids applicability
to the generation of task knowledge to be used for developing curnculum content.

Although the design of the systern was targeted for the acquisition and modeling of procedural knowledge
describing how to use a specific device or system, it can readily be applied for developing qualitative
models of how a system works and for structuring knowledge about concepts, their attributes and relauons
between concepts and attributes.

Numerous applications and benefits which can be achieved from this cognitive task modeling capability as
hey relate to human systems interaction, training systems development, transfer of training, and job
-2sign are discussed.

AN

TABLE OF CONTENTS
Page
INErOAUCTION ..o e 1
Production System Framework................c..oiiiiiii L 2
Applicability of Cognitive Models...................oociii 3
Intelligent Tutoring Application.................cc.ooiiiiiiiiiiii e VORI 3
Predicting Human Performance ..o 4
Problem SOIVING ..o 5
Human Learning. ..ot 6
Tactical Decision Making Trainingoccocoeoioriiiiii e 7
Objective of Research................coocoiiiiii s e 8
Design GUIAEIINES.ccvevniiiiiiiiiee et 9
Review of Methodologies, Results and Conclusion........................ooooviiniii 10
OpeningaFile...................... OO OSSO OSSOSO PP PSPPSR 21
Specifying the Main Goal ..ot 21
Creating a New Methodocoooiiiiiiii e 22
Decision, Store, Recall, and GO TO Steps...........cocooiiiviiiiii e 24
OrQering STEPSoiiiiiiiie ittt ettt 28
Creating Alternative Methods........................oooi e 29
Creating Selection Rules. ..o 31
QuUIttING the PrOCESScoiiiiiiii et 34
Creating Exception RUIEScooviiiii it 35
Returning to Model After Completion of Exception Rule Goal ... 38
Impass Resolution/Overcoming Failures ... 4]
Navigating and Editing AModel ... 46
Making Changes to a Model of Editing.................c.ococcooiiiiiii 53
Changing Step Order...........oooiiiiiiiiiee et 57
Adding a New Method toaModel ..o, 58
Adding a StepinaMethod.............ccocoiiiii e 59
Consolidating Steps into a New Method.............c.ccoceemiiiiiiii e 59
Graphical Editingccocoiiiiii e 60
Executing a Model ..ot 61
Formative Evaluation of Modeling Capabilityccccococoiiiiiieic e 79
MethOdOIOZY ..ottt 80
SUDBJECESoniiniitiiie ettt ettt ettt b et 80
Experimental Materials and Equipment...................cccoooiiiiiiiii e 80
Experimental PrOCeAUIEc.oooiiuiiiiiii et 80
Experimental Analysisoooiiiiiiiiiii e 92
RESUIS ... e, 93
ANOVA on ACCUIACY MEASUTESooviiiiiiiireieieiieie ettt ae e 95
Analysis Of CONSIStENCYcooviiiiiiiiiiiict ettt 97
Discussion and CONCIUSIONcooiiiiiiiice et e et e, 101
I

TABLE OF CONTENTS
Page
Implications for HCI Complexity Predictions....................c.ooo i 103
Predicting Time to Learn and Degree of Training Transfer for
EXtending CAT ..o S 108
Practical Benefits Relative to Manpower, Personnel and Training 115
AcknOWIEAGMENT ... 116
RO OTENCESo e 117
/
i

LIST OF ILLUSTRATIONS

Figure

Figure 1 - Taxonomy of Knowledge Acquisition Methods
Figure 2 - An example of a GOMS hierarchy.........................
Figure 3b - Logic flow diagram for impass resolution subsystem in CAT
Figure 3c - Logic flow diagram for step interpretation subsystem in CAT
Figure 3d - Logic flow diagram for selection rule subsystemin CAT........
Figure 4 - Open File Dialog................cooiiiiiiii e
Figure 5 - Main Goal Dialog.................cooiiiiii e
Figure 6 - New Method Dialog....................ocoiii
Figure 8 - Decision Step Dialog.............ccccoooeriiiiiiii e TR
Figure 9 - Query Store Dialogccooviiiiiiiiiiiee e
Figure 10 - Store Step Dialog.......................... PSSPV UOT PR
Figure 11 - Query Recall Dialog ..o
Figure 12 - Recall Step Dialog..............cooooiiiiiii e
Figure 13 - Step Order Dialogoooooiiiiii e
Figure 14 - Grouping StePsccooiiiiiiiiiiiii
Figure 15 - Consolidation Help Dialogcocoooiiii
Figure 16 - Any More Methods Dialog...............c.oocoooiiiiiiii
Figure 17 Selection Rule Dialogcooooiiiiii e
Figure 18 - Another Selection Rule Dialogcccooiiii
Figure 19 - Describe Methods Dialogcoooiiiiiniiii e
Figure 20 - Introduction to Exception Rules Dialog........................cooooiii
Figure 21 - Add Exception Rule Dialog ..o
Figure 22 - Create Exception Dialogue................c..ccoooiiiiiiiinii e
Figure 23 - Exception Return Dialog.................coooiiiniii e
Figure 24 - Restart Goal Dialog..............ccoooii
Figure 25 - Introduction to Impass Resolution Dialog..
Figure 26 - Primitives Which Can Fail Dialogcccoccooiviiii i
Figure 27 - Impass Resolution Dialog.............c..cooooviiiiii
Figure 28 - Model Definition Complete Dialogcccco.oooii
Figure 29 - The Navigate MenU...............cocooiiiiiiiiiiiecice e
Figure 30 - View Goal Dialog ..ot
Figure 31 - View Goal Containing Dialog.........................cocoocooooiiiii oo,
Figure 32A - Logic flow diagram for View Goal Menu Commands in CAT
Figure 326 - Logic flow diagram for Selection Rule and Exception Rule Menu

Commands in CAT ...ttt

Figure 33 - Goal Edit Dialogccoooiii e
Figure 34 - Condition Edit Dialogccoooooiiiiii e,

LIST OF ILLUSTRATIONS
Figure Page
Figure 35 - Method Edit Dialog.................oooiiiiii i 55
Figure 36 - Step Edit Dialog............cocoooiiiiiiii i 55
Figure 37 - Selection Rule List Dialog ... 56
Figure 38 - Exception Rule List Dialog..............c...ocooooioiiiii L 57
Figure 39 - Graphic Editing...............ccooooiii 61
Figure 40a - Logic flow diagram for Model Execution processin CAT....................... 63
Figure 40b - Logic flow diagram for Goal Execution process in CAT 64
Figure 40c - Logic flow diagram for Method Execution process in CAT.................... .. 65
Figure 40d - Logic flow diagram for Step Execution processin CA ... 66
Figure 40e - Logic flow diagram for Exception Execution process in CAT 67
Figure 41 - Execute Goal Dialog.............ccoovvvviiieieii i 68
Figure 42 - Selection Rules Introduction Dialogcccccooooiiini 69
Figure 43 - Condition Selection Dialog.................ooooiiiiiiiiii e 69
Figure 44 - Goal Failed Dialogoccoiiiiiiiii e 71
Figure 45 - Execute Method Dialog.................cccooii 71
Figure 46 - Method Failed Dialog.................coociiiiii 72
Figure 47 - Goal Accomplished Dialog..................ccooioiii 72
Figure 48 - Step Condition Dialogccocooiiiiiiii e 73
Figure 49 - Execute Primitive Dialog.......................cooooiiiii 74
Figure 50 - Query Execute Primitive Dialog ... 75
Figure 51 - Execution Exception Dialog.................c.ocooiiiiii e 77
Figure 52 - Execute Exception Rule Dialogcooo, 78
Figure 53 - Exception Rule Accomplished Dialog ..o 78
Figure 54 - Prepare to drive a car demonstration model........................coco 84
Figure 55 - Mail a letter demonstrationmodel ... 85
Figure 56 - Model of baseline knowledge for the experimental task ST 86
Figure 57 - Interaction of Method of Type by Primitive Step Type as
PICENt ACCUTACYoiuiieieeieieitiet ettt ettt ettt et et et e e et eeb e e b e eaan e ia e aene 96
Figure 58 - Examples of rules showing transfer status........................ccococ 110
Figure 59 - Comparison of an expert level representation of a method
to a novice level representation of amethod ... 113

v

LIST OF TABLES
Table Page
1 Task Explanation for Screening Session.. 82
2 Task Explanation for Machine-Aided Session.. 87
3 Example Calculations for the Accuracy Performance Measure................................ 90
4 Example Calculations for the Consistency Performaice Measure 91

5 Summary of Consistency Results of Subject-Versus-Subject

Comparison.......................... SRS RSO U RSUOP R OUPTURR 98
6 Confidence Intervals for Performance Measuresoooveimoiee 100
7
v

Introduction

The objective of this project was to design, develop and formatively evaluate a
computerized tool to aid in the conduct of a detailed cognitive task analysis. A cognitive
task analysis provides an explicit description of the procedural knowledge required to
perform a task. These descriptions are referred to as cognitive models or mental models.
These models consist of a set of procedural knowledge units which can be executed by a
production system to simulate how to do something. Consequently, the kinds of tasks
which can be modeled as a result of this research are limited by two restrictions. First, the
tasks must specify how to do something as opposed to how something works. Kieras and
Polson (1985) have discriminated between these two types of knowledge by referring to
them as "how-to-do-it" knowledge and "how-it-works" knowledge, respectively. "How-
to-do-it" knowledge refers to that knowledge which explicitly describes, for example, how
to drive a car. "How-it-works" knowledge explicitly describes the inner workings of the
physical system which enables a car to be driven. It appears from our research that the
process of eliciting knowledge which explicitly describes "how-to-do-it" versus "how-it-
'works" is the same; however, tﬁe instructions for eliciting "how-it-works" knowledge
requires different semantics. Likewise, the knowledge "1nits for mentally modeling how to

do something and how something works appear to share the same structure.

The second constraint limiting the range of tasks which can be modeled as a result
of this research effort, was that the units of knowledge making up the model conform to
the structure of a production unit executable by a production system architecture of
cognition. Production systéms of cognitive psychological processes were introduced by
Newell (1973) and Newel! and Simon (1972) as a result of their work in understanding

human problem solving. Production systems were later applied to human learning by

Andersor Klein and Beasley (1980). A production system was also the fundamental
architecture for Anderson's (1983) Adaptive Control of Thought (ACT) model. Since
then the production system architecture has been applied to modeling a wide range of

cognitive tasks (Klahr, Langley and Neeches, 1987).

Production System Framework

A production system cousists of a ccllection of production rules and a working
memory. The working memory consists nf a representation of the current goal(s) which
the system is attempting to achieve, the status of current and past actions, and information
about the current environment. A production rule takes the form of a condition-action
pair: IF (condition(s) THEN action(s)). The condition side of the rule consists of the
contents of working memory: specific goals, the status of recent pzst and current actions,
and specific input from the environment. The action(s) can consist of overt behavioral
acts or the addition or deletion of information in working memory. A whole set of these
production rules make up a program which, when executed, simulates how to do

something.

The process which drives this simulation is referred to as the recognize-act
process. During the recognize stage, the condition side of the rules making up the
program are compared to the contents of working memory. If a rule's conditions match
with the contents of working memory then the action side of the rule is fired. This action
in turn changes the contents of working memory. On the next cycle of the process, the
recognize stage again compares the new contents of working memory with the set of
production rule conditions and fires another action if the conditions of a rule match. This

process continues until the goal which motivates the system is achieved. Therefore, given

this definition, the objective of conducting a cognitive task analysis is to create an explicit
set of production rules having the structure: IF (condition(s) THEN action(s)). This
knowledge program can be executed by a production system to simulate the mental and
behavioral operations required to perform a task. The resultant models created by such an
analysis have been demonstrated to be extremely accurate in predicting human
performance on procedural tasks (Card, Moran and Newell, 1983; Kieras and Polson,
1985, Polson, 1987; Kieras and Meyer, 1992; Gray, John, and Atwood, 1992 and Peck
and John, 1992).

Applicability of Cognitive Models

To date, the cognitive models which result from a detailed cognitive task analysis
have been applied to the development of intelligent tutoring systems, the prediction of
human performance, the evaluation of the complexity of human computer interfaces, the
development of models of human problem solving, the understanding of human learning,

and the development of real time knowledge-based simulations of tactical decisions.

Intelligent Tutoring Application

The intelligent tutoring system case employs a cognitive task model of some
domain which is used to monitor the student's performance and to diagnose difficulties
wl}ich the student is having in solving domain related problems. A notable example of an
intelligent tutor employing a cognitive task model is Anderson's LISP tutor (Anderson,
Conrad and Corbett, 1989 and Corbett and Anderson, 1989). As Anderson et al (1989)
have pointed out, one of the important benefits of this tutoring work is the careful task

analysis that goes into developing the production system model of the domain task. This

analysis yields a more systematic and cntical development of the curriculum for
instruction. Indeed Williams, Reynolds, Carolan, Anglin and Shrestha (1990)
demonstrated a 65 percent improvement in skill acquisition by restructuring existing

curriculum employing a detailed cognitive task analysis approach.

Predicting Human Performance

The prediction of human cognitive performance is another case in which a detailed
cognitive simulation model is a fundamental requirement (Card, Moran and Newell, 1983,
Kieras and Polson, 1985; Kieras, 1988; Gray, John and Atwood, 1992 and John, 1990).
Recently Kieras and Meyer (1992) have demonstrated a 99 percent agreement between
observed behavior and predicted behavior when predicted performance was generated
employing a detailed cognitive task model of multi-task performance. Having the power
to predict performance via a computational model of a cognitive task can have numerous
applications. One can accurately predict human performance in hypothetical situations
prior to the costly design and development of prototype systems which must be subjected
to real world tests. The capability to predict performance of a human operator while
conducting a task in a complex man-machine environment can reduce the time to develop
systems. This prediction can ensure that the human can perform the tasks given a
proposed system design, such that the benefits of a proposed system can be fully achieved.
Human performance prediction is especially important in the design of man-machine
interactions. The ability to predict human operator performance by cognitive simulation
modeling can identify potential design features which may inherently generate operator
error due to exceeding human capacities to process information. Predicting human
performance by modeling the cognitive tasks which describe ma'.-machine interactions can

therefore greatly reduce design, development and evaluation costs.

Problem Solving

From a research perspective, cognitive task modeling is fundamental to
explanations of human problem solving and human learning. The early work of Newell
and Simon (1972) focusing upon the discovery of the underlying processes of problem
solving, emphasized the importance of a problem representation in the problem solving
process. In accordance with the formulation of the problem solving process, there are two
stages to problem solving: the representation stage and the solution stage (Simon, 1978).
The representation stage consists of describing the goals, subgoals. the initial conditions
and the various alternative operations which can be applied to achieve different specific
subgoals in an attempt to achieve the end goal. In short, the representation stage consists
of the development of a cognitive model. All of the relevant problem knowledge in the
form of IF (goal, subgoal and conditions) THEN (action) must be retrieved from memory
and integrated in such a fashion as to create this problem representation. The
representation or mental model of the problem to be solved is fundamental to the problem
solving process. Without an adequate cognitive model of the problem, the solution cannot
be achieved. The solution stage of problem solving consists of making the right choice
between alternative actions to apply to the problem in order to reach specific subgoals,
and eventually, the end goal. This implies that good problem solvers have comprehensive
representations or cognitive models made up of many knowledge units of the [F-THEN
form which can be integrated and assessed in terms of their applicability in attaining
intermediate subgoals and the end state. Consequently, the ability to generate
comprehensive r5;;nitive models of a problem situation is fundamental to problem solving.
This formulation of problerh solving has been shown to be applicable to such important
activities as scientific discovery. The work of Langley, Simon, Bradshaw and Zytkow

(1987) and Qin and Simon (1990) has demonstrated that the processes which describe and

replicate how some of the great discoveries in science were achieved, such as Kepler's
laws of motion of planetary bodies, Boyle's law of behavior of gases under pressure,
Galileo's law of uniform acceleration, and Ohm's law of electrical conductivity, are in fact

no different than those processes observed in all kinds of problem solving situations.
Human Learning

Other research evolving from studies in problem solving has focused upon an
investigation of what is referred to as the "self explanation effect”. The self explanation
effect is used to describe why good reasoners or learners differ from poor learners even
when good and poor learners are approximately equal in intelligence and prior knowledge
about a domain. Apparently, good learners generate more explanations for the actions
they take in developing a solution to a problem. Poor learners on the other hand do not
generate sufficient explanations relative to identifying conditions associated with actions
taken (Chi, Bassok, Lewis, Reimann and Glaser, 1989). In an attempt to determine
exactly how these good learners do what they do, researchers (Van Lehn, Jones and Chi,
1991) have built production syétem models to determine differences in the way in which
good and poor learners represent and solve problems. The cognitive model building

process is crucial to the conduct of such learning research.

Other learning research conducted by Kieras and Bovair (1986) and Bovair, Kieras
and Polson (1990) related to the case of learning a cognitive task has demonstrated that
the time to learn a text editing skill can be predicted from a detailed cognitive task model.
Consequently, as we again éee, cognitive modeling is essential for the conduct of research

in such important areas as human learning and problem solving,

Tactical Decision Making Training

As a final point in motivating the significance of cognitive task modeling, it is
important to note the applicability of cognitive task modeling for simulator based training
systems. Tactical decision making can be extremely complex depending upon the weapon,
sensor, countermeasure and maneuvering characteristics of the targets which are engaged
in the tactical situation. Consequently, training individuals to make the right decisions in
deploying their systems in a tactical situation is, likewise, complex. An important aspect
in training tacticians is to provide a simulation environment in which tacticians can acquire
knowledge of enemy tactics and apply their knowledge of tactics in making decisions to
overcome the enemy. Of major importance in tactical decision making training is knowing
what the enemy can do. Knowing what the enemy can do allows the tactician to formulate
hypotheses about potential enemy action, verify a specific hypothesis about enemy intent,
and take action to both counter enemy actions and effectively eliminate the threat.

Tactical training, therefore, requires an intimate knowledge of enemy tactics. This
knowledge is typically acquired in the classroom and then applied in simulator based
training scenarios. The dynamic exercises generated by simulator based training systems
must therefore demonstrate, with a high degree of fidelity, the tactical behavior of enemy
targets. Williams and Reynolds (1990) developed, demonstrated, and evaluated the
fidelity of a number of Soviet platforms (i.e. air, surface, and subsurface) the tactical
behavior of which was controlled by cognitive models of Soviet threat tactics in a dynamic
training simulator environment. Additionally, Williams and Reynolds (1990) provided
simulations of other U.S. Naval platforms operating in consort with each other in a
combined arms operation against hostile targets. Expert Naval tacticians agreed that the
tactical behavior of the simulated targets were within 80 percent of what they would

expect in the real world if they were faced with a similar tactical situation.

The benefit of such simulation for training purposes is a reduction in the manpower
required to maneuver targets during simulation exercises. (Targets are typically manually
maneuvered by problem controllers during the conduct of simulation exercises).
Furthermore, these cognitive model controlled simulations provide greater realism (i.e.
functional fidelity) to the training situation. Tacticians who can acquire the cognitive
models of hostile tacticians are better prepared to formulate hypotheses and reason about
hostile intent. Solving problems about adversaries, therefore, requires that the tactician
has a comprehensive model of not only his own tactical capability but also that of his
opponent (Thagard, 1992). Cognitive model based simulations of opponent tactics can be
quite useful in mission planning and assessing the intent of the opponent during a dynamic

engagement.

Objective of Research

Given the breadth of applications which have involved production system models
of cognitive tasks, and the impact of such modeling in terms of training gain and the ability
to predict human computer interaction, it appears that this modeling process is quickly
becoming a core technology for advanced systems development. However, the benefits
from the application of this core technology will not become fully realized until the cost to
develop such models is reduced. Presently the cost of cognitive task modeling is driven by
the scarcity of those individuals skilled in cognitive modeling and the intensity of labor
required to create such models. Consequently, the objective of this research was to
identify and systematize a process for the conduct of a cognitive task analysis which would
lend itself to automation as an interactive computerized aid. The initial application for an

automated process was targeted for capturing knowledge about "how-to-do" something

which in turn would be used in developing ideal student models for production system

based intelligent tutors for Navy systems operator training.

Design Guidelines

In keeping with the objective of this research, a number of design guidelines were
developed to aid in identifying and selecting a cognitive task modeling methodology which
would be applicable to the initial target domain of ideal student modeling for procedural
tasks, as in device operations. The design guidelines consisted of five constraints on the

chosen methodology.

The first constraint addresses the nature of the production system architecture of
cognition. The methodology must yield units of knowledge whose structure and form is
consistent with the condition-action units typical of production systems, since this form c.”

knowledge representation has been shown to mimic human cognition.

The second constraint refers to the breadth of task domains to which such a system
can be applied without the need of prior knowledge about a domain. This is a general
purpose criterion. Some cognitive modeling or knowledge acquisition techniques require
interaction with an individual or a computerized aid which shares some degree of
knowledge about the task being modeled. Therefore, some automated acquisition
techniques require preprogramming a portion of knowledge about a domain prior to
eliciting more detailed knowledge from an expert. This process would obviously lend
additional cost to automating the modeling process and would reduce user acceptability of
such an automated aid. The objective is to select a methodology that does not require

prior task knowledge.

The third constraint is that the methodology must involve a highly systematic
process. The process must be specified to a level of detail which lends itself to translation

into a formal computer program.

The fourth constraint addresses ease of use. The methodology must elicit
knowledge from a user in a manner which is simple and natural, and the interface must
guide the user through the process without requiring the user to learn a large number of
commands. The process must be compatible with the way in which people typically

describe procedural tasks.

The fifth and last constraint refers to the validity of the methodology. The
methodology must generate models of cognitive tasks which have been empirically
demonstrated to be predictive of human performance. This last constraint lends credibility
to the process in that the models can be used to make predictions about human

performance which correlates highly with observed behavior.
Review of Methodologies, Results and Conclusions

The search for an appropriate methodology led to a review of knowledge
acquisition techniques for eliciting and/or acquiring representations of cognitive structures
from experts. Approximately fifty different sources of knowledge acquisition
methodologies were reviewed. From this review, a classification scheme for organizing
the methodologies was developed. A taxonomy of knowledge acquisition techniques was
generated from this initial classification. Instances of techniques which were referred to by
different names, but still shared fundamentally similar processes and purposes, were
grouped together and a simple instance was selected from this group to represent the

methodology in the taxonomy. The high level classification grouped the methodologies

10

along a continuum describing the degree which automation played in the elicitation
process. The resultant classes (See Figure 1) consisted of manual methods which included
little if any automation, machine-aided methods which involved interaction between an
expert and a computerized aid, and machine learning methods which required minimal

human interaction (Williams and Kotnour, 1993).

Each of the methodologies included in the taxonomy was then assessed against the
design guidelines. Those methodologies which were not consistent with each and every
constraint of the guidelines were eliminated from further consideration. As a result of this
process of elimination, two methodologies were found to meet each constraint specified in
the guidelines. These two methods fall within the manual methods techniques and have

been referred to as "cognitive task analysis" methods.

The two methods identified were GOMS (Card, Moran and Newell, 1983) and
Constructive Interaction (Miyake, 1986). Each method employs a top-down, breadth-first
decomposition process. In a GOMS analysis, the decomposition operates on goals to be
accomplished by steps of a procedure. In the Constructive Interaction case, the
decomposition operates on functions to be realized by a set of mechanisms. The
difference between these two methods lies in the type of knowledge they model.
Constructive Interaction describes a process employed by individuals communicating their
understanding of how a complex physical device works. That is, the result of the process
yig)ds "how-it-works" knowledge. The GOMS technique on the other hand was designed
to yield "how-to-do-it" knowledge units. Each method builds a hierarchy of knowledge.
The Constructive Interaction process yields a hierarchy of functions and mechanisms to
produce these functions, whereas the GOMS process yields a hierarchy of goals and

methods to accomplish those goals. Since the GOMS analysis process has been weil

11

SpoIo|N uonisiboy a8paymouy jo Awouoxe] - | amSiy

_ J

SAOHLIN NOLLISINOIV ADATTMONN

2 (0) 4 ”
IBNUAIAYJI(PUE JIA0— AL
UOTIDBIIIU] 2ATINNSUO)) |
SKWO0D
LTvS y _
sisdfeuy ysej, aanuso
udisaq ARy —ud EUVASEL 3401500 uonjeuurexy
8unuog pre) UM —
ISIUOTIIIUUO) ITZZIS SIAINY) PAsOL)
. MO Tenualaju] M3y adf10%0.
50 RO FOVNA [TE99Y WOy $3AL] PaIIPIQ)| a.é%_omuo &a%o& |
OfEuy TeuoleAlS(] d SuLISN]) ROTYIIRISIH |
Suturea| paseq-uoneuejdxy e padwoyy o SyompBN P p——
pawydiap [e10u2D |
mipeuy uontsodwosaq
[euonouny uonwfissoy) 12alq0 — sisAreuy uondnuu
SU1japojN JseL .amﬁé _m.sa&~
= |
SwaIskg 1ajisse]) uopisodwiondnq —— UONBAINSq) — |
spun Kiouaday paseq-ase)
Sureog ruoIsUaW-NIN SaITeUUONSany)
— uoneIYIsse;’) 199[qQ) ~—— padwory - MIAIdY
PAIMIINLISU [}~
Sururea aumyoepy PPy SUTydR ~ [enUBIN

developed for practical application by Kieras (1988 and 1991) the GOMS methodology
was selected after implementation as a computerized structured interview aid to develop

cognitive models of tasks.

GOMS Analysis Process

The GOMS process involves specifying four types of components to a cognitive
task. These components are (1) goals - what needs to be accomplished, (2) operators -
the steps which must be taken to accomplish a goal, (3) methods - a collection of steps
which must be executed in some specified order to accomplish a goal and (4) selection
rules - a set of conditions which determines which method to select if more than one
method can be executed to achieve a specific goal. The relationship of these components

is presented in Figure 2 as a goal-method hierarchy.

The GOMS process is initialized by specifying a top level goal to be accomplished.
Next, a set of high level steps making up a high level method must be identified to
accomplish the high level goal. Typically there is only one high level method for
accomplishing the top level goal at this stage of the analysis. Each step in this high level
method is then made a subgoal, which in tum can be accomplished by another method or
set of methods. This is what is meant by top-down decomposition. In left to right order,
each new subgoal must then be assigned a method or set of methods which can
acgomplish the subgoal. If more than one method can be used to accomplish a specific
subgoal, then a selection rule must be defined which specifies under what conditions one
would execute one method as opposed to some other method. When methods have been
identified for the first subgoal, the next subgoal in the tree is addressed in order to specify

the method or methods appropriate for accomplishing it. When methods for each subgoal

13

(1661 ‘SWerIA ‘6861 ‘U0S[Od pue se1ary ‘8861 ‘SeIdry ‘€861
‘9MON PUE ‘UBIOJ ‘PIE)) JO SBIPT WO PAJRNSQY) "AYdIeIany SINOD ® Jo dwexas uy - 7 amSyy

o N
VANV

14

SPOUIOIAl SATIBULIDITY

@
v

JI1NnA
ILLODA 1
TITVOD TVOD
aMns HOS

s’

have been defined, the process returns to the leftmost method in the tree. This is what is
meant by breadth-first. The method steps are again transformed to subgoals for which
new methods need to be described in order for the subgoals to be accomplished. This
process continues until each step in a method is identified as a primitive ope.ator (one
which can no longer be decomposed) or a subgoal which the analyst does not wish to
further decompose. When all steps in all methods are primitive operators, or subgoals

which require no further decomposition, the analysis is complete.

The process for constructing a representation of "how-it-works" knowledge, as
described by Miyake (1986), is similar if not identical to that for structuring "how-to-do-
it" knowledge. In the Constructive Interaction case, a top-level function is specified as
opposed to a top level goal. Instead of a top-level method made up of a set of high level
steps or operators, a set of high level mechanisms is specified to enable the function. This
set of mechanisms may have a sequence of actions, or some may be enabled in parallel.
Each mechanism is then converted to a subfunction which must be realized by a set of
submechanisms. It may also be the case that more than one set of submechanisms can be
used to achieve the function. If this is the case, then a set of conditions or parameters
must be specified for selecting one set versus another set of submechanisms. As a result
of the similarity between these two techniques, simply changing the language used in the
instructions of the interview process can yield qualitatively, "how-it-works" knowledge in
the same fashion that the GOMS terminology is used to yield "how-to-do-it" knowledge.
Ol}r efforts to automate the development of models of procedural tasks can to a large
extent be transferred to a process for automating the acquisition of qualitative cognitive
models of physical systems.” By changing the language used in eliciting knowledge from
experts, the GOMS methodology can be translated into a method for eliciting knowledge

units which model one's understanding of how a physical device works.

15

Automating the Cognitive Task Analysis Process

Having provided a brief overview of this GOMS analysis process, a detailed
description of the operationalization of this process in a software system called Cognitive
Analysis Tool (CAT) is presented in the following. As this description unfolds, extensions
to the original GOMS analysis technique are discussed. These extensions were provided
to increase the flexibility of the GOMS technique by breaking the rigid hierarchy typical of
GOMS. Consequently, the CAT system can model tasks which can be interrupted so that
new subgoals can be set outside of the task hierarchy. This essentially handles exceptions
to normal task execution. Additionally, a capability to handle the potential faiiure of steps
to be executed was also provided to model recovery from the failure to execute a task,
ensuring that careful consideration of all possible alternative methods has been given to

the modeling process. Figures 3a-d depict a logic flow diagram of the CAT system.

CAT provides two modes of operation. One mode is referred to as the
GUIDANCE mode and the other is a free play EDIT mode. The GUIDANCE mode
constrains the user to follow a specified process for capturing knowledge about a
cognitive task. The EDIT mode can be accessed at any time so that the user can control
the sequence of activities he/she wishes to activate. Since it is assumed that most users
will be unfamiliar with the cognitive task analysis process, the GUIDANCE mode of
operation shall be discussed in detail in the order in which the user would encounter the
va;ious dialog boxes presented by the system. The EDIT mode allows access to all dialog
boxes presented in the GUIDANCE model but does not impose a sequence on their

presentation.

16

sdaig
saudianug

*l sah |1

! Boeig poytepy men .\

{

S94A
]

éspoylews eJow
10 euo equose(].
Boreig ONSOA

ON
Y
eAIWId
%ew

LVvD 103 wreiSerp moyy 2130] [[eI9AQ - BE NS

!

8Jow Auy, ONSOA

; ow
£SpouUl - ON

S94A

cpeuijep
¢ ON peese
poyieiu e s

S3A

¢eob
eiejdwooui
ue eley S|

eseyd
peejes - ejny uojideox3y
9|y woy) peo’ o} bojeig
| § 6omg UoIONPOY|
feo urey ﬂ
y \ uadgp
Bojeig
MaN o|i4 uedO

e~_==

- SaA

Boreiq ueisey.
Buuinbey sreon

A
ON

Bojeig wmey
uoiidesx3y

O

Boreiq o
nnjosAYy
uondeox3 erees) sseduwy
1 WLIOJ]
S3aA
<8Ny uolideox3y e1edwon sejny
pov. Doreigonses —ON | oiie0es wen

17

LvO ut washsqns uonnjosa ssedwi 103 werSerp moy 213077 - q¢ amdry

ejedwo)
uoniuyeq
|epop - Bojeiq

uonisues}

Bojeiq
uoyinjosay ssedw; [SAH

ésseduy
ue aJsey} S|

18

Bojeiqg 118} uLd
Uotym sealliwld

uognjosey
ssedw| -
0} uondnNpoOsu|

LvD ur waisAsqns uoneraudiaur dais Joj werderp moy o807 - o¢ amBrg

ﬁ

Bojeig deig jieoey

1

saA

Bojeiqg
jlesey Aiend)

q

Bojeig deig ei0lg

1

S3A

Bojeig
1015 Aienp)

Bojeiq deig uorsioeq _

SaA

Bofeig
uoisioeq Aend

Sa

ideis
IIeo8s € 8|
H00i ¥ s80Q

ideis
810]Ss & o)
H00] ¥ s80Q

idels
uoIsioop e eyl
%00] ¥ s80Q

Bofeig dio

UOHEPHOSUCD

idels
pexoeyoun
ue 818y} s|

LD ut wasAsqns opru uonod|3s 10j urerderp moy 918077 - pg NIy

.L8iny
UoN0e|BS JeLIOuY, ON
BofeIa ONSOA

SaA

einy uoioejes

4

ejeidwo)
SN IS einy uojosles
SPOYIeWN e

o Gogos
elejdwoouym ON
poyiew Auy

20

SaA

y

¢poyisw
| uey ON aopdwoo se
aiow 8194} S| jeob syl yyepy

ﬁ N

wma

!

Opening 2 File

Upon selecting the CAT icon from the Windows 3.1 Program Manager, the first

Select a model from the
directory or click NEW to
conduct a new analysis

clcat

*.ca

a.cat

c.cat

car.cat
comperr$.cat
compstr.cat
cutpaste.cat
drugs.cat
elliot.cat
emathq.cat

dialog box encountered is the Open File dialog box. We assume that the user is familiar
with a graphical user interface and the operation of a mouse input device. Figure 4 depicts
this dialog box. The user may select a model stored in a file or select NEW to create a
new model. For purposes of describing the process it is assumed that NEW is selected.

Having selected NEW, the Main Goal dialog box is presented to the user.

~Help

Figure 4 - Open File Dialog

Specifying the Main Goal

As Figure 5 depicts, the user is requested to give a name for the top level goal to

21

be achieved by the cognitive task model under development. A field for elaborating on the

description of the goal is also provided. Having specified a name for the top level goal,

the user is instructed to click on OK.

Main Goal Dialog

Please enter a name, and optionally a descnptive comment, for your top
level goal

Name: ~Help

Description:

Figure 5 - Main Goal Dialog
Creating a New Method

This action presents the user with the Create New Method dialog box as presented
in Figure 6. The New Method dialog box requires the user to give the method a name
and then to describe a set of steps which make up the method. The user may describe as
many steps as he/she wishes. If there is only one method to accomplish the goal, the

/
method name will typically be similar to the goal name.

22

Create New Method...
Edit

Enter the steps necessary to accomplish the goal ‘do it'. ~Help

Method Name: ||
Step 1.

Figure 6 - New Method Dialog

Decision, Store, Recall, and Go To Steps

Following this step description, each step is checked to determine if (1) the step
described requires that a decision be made, (2) the step described requires that information
needs to be stored in memory for later retrieval, or (3) the step requires that some

information be recalled from a memory store.

If any step signifies that one of these three actions is implied the user is further
queried about each of the appropriate steps. If a step description is indicative of a
def:ision, the user is presented with the Query Decision dialog box of Figure 7. This
dialog box determines if the user’s step description implies that a decision must be made.
If so, then the Decision Step dialog box of Figure 8 is presented. The Decision Step
dialog box imposes one IF-THEN-ELSE structure upon the user which must be filled in to

indicate the specifics of the decision to be made by the decision step specified.

23

. Query Decision Dialug

One of the steps you entered was:

if today is Sunday then go to church [Help

Your use of the word 'if' in this step
indicates that a decision needs to be made
at this point.

if the action to be performed at this point
is dependent on some condition, press the
button labeled "Yes'. Otherwise, press the
button labeled *No'.

Figure 7 - Query Decision Dialog

Decision Step Dialaog

Piease fill in the following information:

~Help

if aday is Sunda

then |go to church

else

RS

;T :\\:{
SR e

Figure 8 -~ Decision Step Dialog

24

If a step description indicates that some information must be stored in memory, the
user is presented with the Query Store dialog box as in Figure 9. The Query Store dialog
box requests confirmation from the user concerning the correctness of the inference that a
step implies that some information be stored in memory. If the implication is confirmed,
the Store Step dialog box is presented to the user as depicted in Figure 10. The user is
then requested to supply the appropriate information; namely a name or "key" under which
the information is to be stored and the value to be stored under that name. For example,

store the value "banana” under the key "fruit".

Query Store Dialog

One of the steps you entered was: ~Help

store the value of x

Your use of the word *store’ in this step
suggests that some data is being stored in
short-term memory.

If at this point, you are indicating that
something is to be remembered for later
recall, press the bufton labeled "Yes'.
Otherwise, press the button labeled *No'.

Figure 9 - Query Store Dialog

25

Store Step Dialog :

Please fill in the following information: [Help

Key

Value

Figure 10 - Store Step Dialog

- If a step name implies that some information be recalled or retrieved from memory, the

user is presented with the Query Recall dialog box of Figure 11. If the user responds that
the step does imply a recall of some information from memory, then he/she is presented
with the Recall Step dialog box of Figure 12. This dialog box like the Store Step dialog
box requires that the user specify the name or "key" of the slot in memory from which
information is to be recalled. These checks on step descriptions are conducted on each
step of each method described during the analysis process. For example, if one wished to

recall the value of "fruit”, from the store-step defined, the system would return "banana".

26

Query Recall Dialog

One of the steps you entered was:

Help
recall the value of x

Your use of the word ‘recall’ in this step
suggests that some data is being recalled
from short-term memory.

If at this point, you wish to indicate that
some information, previously stored, is to
be recalled, press the button labeled
*Yes', otherwise press the button labeled
'No'.

Figure 11 - Query Recall Dialog

Recall Step Dialog
P

ease fill in the following information: ["Help

Key

Figure 12 - Recall Step Dialog

27

Additionally, the user may transfer control of step execution within a specific
method simply by typing "go to" and indicating the step number within the method to
which execution is to be transfered. "Go to" steps can be used as an individual step or in
the context of a decision step of the IF-THEN-ELSE type. Having completed these
checks and the appropriate responses required, the user is presented with the Step Order

dialog box.

Ordering Steps

The Step Order dialog box of Figure 13 requests the user to identify the order in
which the steps of the method defined are to be executed. The choices are: (1) the order
in which the user defined the steps, (2) any order or (3) some other order. If"As Entered"
is selected, the system will assume the order in which the steps were defined in the New
Method dialog box. If "No Particular Order” is selected, then the system will assume that
the steps may be executed in any order. If "Other" is selected, the user is presented with
the graphical portrayal of the method described. The user may then move the graphic
boxes associated with any given step to the position in the graphic which indicates the
order in which the steps are to be executed. The topmost step box of the method is the
first step to be executed. That is, execution order is top down in the graphic

representation of the method steps.

; When interacting with the graphic portrayal of a method the user may also group
steps by drawing a box around those steps to be grouped. Grouped steps are indicated by
the gray shaded area surrounding a set of steps as depicted in Figure 14. The system then
assumes that those steps which are grouped can be executed in any order or

simultaneously. Simultaneous execution of the steps in a method is a capability which is

28

not assumed in a traditional GOMS model but has been introduced in CAT as a result of
research conducted by Kieras and Meyer (1992) and John (1990). Simultaneous

execution of steps is appropriate when modeling parallel tasks or a multi-tasking activity.

Step Order Dialeg -

Please select an ordering for ~Help
these steps

~ Step Ordering

@ As Entered

QO No Particular Order
O Qther

Figure 13 - Step Order Dialog

b Figure 14 - Grouping Steps

Having specified an appropriate order for execution the system conducts a further
check on the number of steps specified in a method. A decision was made early in the

design process to allow the user to unpack or elicit as many steps in a method as he/she so

29

desired so as not to interfere with the recall process. However, concurrently, we also did
not want the user to specify low level steps early in the modeling process. onsequently,
it was decided that when the user has finished recalling steps in a method, if there were
more than nine steps specified (the upper boundary on working memory capacity from
Miller, 1956) the system would force the user to consolidate or chunk some of these steps
into a higher level step. In order to do this consolidation, the user is presented with the
Consolidation Help dialog box of Figure 15, which instructs the user as to the process for
chunking some set of steps into a higher level step. In order to do this the user must exit
the GUIDANCE mode, consolidate the step as instructed and then return to the
GUIDANCE mode. Consolidate is accomplished by a method similar to that used when
grouping steps for simultaneous execution. Consolidation is continued until not more than

nine steps have been specified for any given method.

0 A method with 10 steps exists. Some of
these steps must now be consolidated
into a new subgoal.

Figure 15 - Consolidation Help Dialog
Creating Alternative Methods

After a method has been specified to achieve the top level goal, the system

requests the user to specify any alternative methods associated with the accomplishment of

30

‘7 BN T &G BN A N BN B BE O EE EE Eyp =

the goal as is depicted by the Any More Methods dialog box of Figure 16. If another
method can be described, then the New Method dialog box oi Figure 6 is presented again.
The process iterates on the above mentioned sequence until the user responds "No" to the

Any More Methods dialog box of Figure 16.

Yes orNo ?

= Isthere another way or set of steps (method) for

= & accomplishing the goal of “step 17

Help

Figure 16 - Any more methods Dialog
Creating Selection Rules

Having described a method or set of methods for a specified goal, the system will
check to determine if more than one method was defined for the current goal. 1f there is
not more than one method the goal is marked as completed. If there is more than one
méthod which has been described, the system tests to determine if selection rules have
been defined for each method. If any method is without a selection rule, the user is
presented with the Selection Rule o °log box of Figure 17. This dialog box requests that

the user define a condition or set of coi.ditions which if all are true will trigger the

31

selection rule of the current method displayed in the display box. That is, conditions of
the selection rule are 'and’-ed. However, there may be an alternative selection rule for the
current method. Consequently, the user is presented with the Another Selection Rule
dialog box of Figure 18. If another Selection rule can be described for a specific method
the user will be returned to the Selection Rule dialog box of Figure 17 and requested to
define anowner set of conditions. If more than one selection rule for a given method has
been defined the selection rules are ‘or'-ed. That is, depending upon the conditions of each
alternative selection rule, one or the other may be triggered to select a specific method.

The user may define as many selection rules as he/she wishes for any given alternative

method in the set defined to accomplish a specific goal.

Create New Selection Rule
Edit

Please list conditions which, if all true, justify the use of the ~Help
method 'use command key' for accamplishing the goal of title
‘issue the CUT command'

Method Name: use command key

Condition 1. {yser knows command key equivalents

N N T N T N I R B R S BN B =

£ N
HE T B aE En

Figure 17 - Selection Rule Dialog

32

Yes of No ? 9] 2]

? Is there another condition or set of conditions under which
& youwould use the method “use command key" to
accomplish the goal of "issue the CUT command"?

Help

Figure 18 - Another Selection Rule Dialog

When selection rules have been defined for each alternative method under a
specific goal, the system marks the selection rules for the methods "complete” and marks
the specific goal "complete". The system treats each step of a method as a subgoal and
determines if a method has been defined for that step. If not, the system presents the
Describe Methods dialog box of Figure 19. If the user wishes to decompose the step as a
subgoal along with a method or alternative .nethods, the New Method dialog box is
presented as in Figure 6. If the user does not wish to decompose the step as a subgoal,
the system marks the step as "primitive”. Primitive steps are the lowest level steps which
do not require further decomposition. The motivation of the system is to decompose all
steps of all methods until all steps in all methods are marked "primitive”. When all steps

ofall methods are marked primitive the first phase of the analysis is completed.

33

Yes ar No ? %ﬁ%ﬁ

; Do you wish to describe the set of steps (method) that are

o necessary for accomplishing the goal of “step 17

~Help

Figure 19 - Describe Methods Dialog

Quitting the Process

At any time during the analysis process it is anticipated that the user may quit the
modeling process. If so the name of the model as specified in the top level goal will be
stored in a file for later retrieval. When the user returns to complete the model the Open
File dialog box of Figure 4 is presented. The user may then select the appropriate file
name, at which time, the model will be loaded into the system. The system will then check

to determine if any steps need to be decomposed as subgoals. If so, the process described

in‘the above is initiated.

34

Creating Exception Rules

Given that all subgoals have been decomposed as a result of the first phase of the
analysis, the user is presented with an Introduction To Exception Rules dialog box of
Figure 20. This dialog box explains what is meant by an exception rule along with the
purpose of exception rules. The user may request a more detailed explanation regarding
exception rules by clicking on the HELP button. When the user has completed the
introduction to exception rules, he/she is presented with the Add Exception Rule dialog

box of Figure 21.

Exception Rule Traasition Dialog

You have now completed the analysis to a point where all steps are
primitive, that is, they cannot be further decomposed into lower level
methods.

We now want you to think about sets of conditions which if rue would
interrupt the normal execution of your task model and would divert
you to accomplish another goal independent of the goal it is
attempting to achieve.

This is what we are calling an exception rule.

That is, no matter what the goal is that you are trying to accomplish, if
all of these exception rule conditions become true, then abandon the
goal you are attempting to achieve, and proceed to accomplish the

/ new goal specified by the exception rule.

Figure 20 - Introduction to Exception Rules Dialog

35

The user is queried as to whether or not he/she wishes to define any exception
rules for the model using the Add Exception Rule Dialog of Figure 21. If an exception
rule is to be defined, the user is presented with the Create Exception dialog box of Figure

22.

Yes orNo ?

r— Is there a condition or set of conditions which would cause
bej = you to abandon what you are doing at any time and force
you to set a new goal?

Help

Figure 21 - Add Exception Rule Dialog

36

Create New Exception Rute
Edit

Please list conditions which, if all true, should trigger the
execution of a new goal.

Goal Name:

Condition 1:

~Help

Figure 22 - Create Exception Dialog

The exception rule dialog box requires that the user indicate a set of conditions
which if true would force the abandonment of task performance independent of what
he/she is attempting tc accomplish at the time the exception rule conditions were met. In
brief, an exception rule is global and can be triggered at any time. It can be thought of as
an interruption in normal task performance. Creating an exception rule also requires that
the user specify a new goal to be set when exception conditions are met. This almost
invariably will require that new methods, their steps and potentially new selection rules be
developed to accomplish the goal which is set by the exception rule condition. The

accomplishment of the exception rule goal may require the definition of a relatively

complex model.

37

Returning to Model After Completion of Exception Rule Goal

When the exception rule has been defined, the user is presented with the Exception

Return dialog box of Figure 23.

Exception Return Dialog ey

When you have accomplished the new goal of
"counterattack® as specified by this exception rule, would
you always return to the task which you abandoned?

Iif “Yes", the system will return execution of your model to
that step which was interrupted at the time that the
exception rule was triggered.

If "Nlo" you will be asked to specify which subgoal(s) would
be invalidated because of the exception, and would therefore
need to be restarted.

Figure 23 - Exception Return Dialog

As indicated by the dialog box the user is requested to think about where he/she
would return in terms of normal task performance following the accomplishment of the
exception rule goal. During execution of some task the user may simply return control
back to the step which was abandoned when the exception was triggered. However, the
world is dynamic and things change. Consequently, the user must determine if what was
accomplished prior to the triggering of the exception rule has been undone with the
passage of time. That is, the user must think about instances which could not be directly
returned to following accomplishment of the goal specified by the exception rule. The

best way to do this is for the user to think about subgoals which if abandoned would have

38

to be achieved over again if the task is interrupted. If this is the case the user is presented

with the Restart Goal dialog box of Figure 24.

Restant Goal Oialeg

You have indicated that subgoal "'step 1' needs to be restarted. Subgoal “'step 1'' is achieved
by method "method 1".

Which steps in method "method 1* would have to be accomplished over again if subgoal
“step 1" is restarted?

Your exception rule subgoal of “counterattack’ was triggered by conditions “ship is under
attack”.

Click in the box adjacent to the subgoal names which would have to be accomplished over
again.

if you do not select a subgoal to be restarted the system will assume that you can return to
the step in the method which was abandoned at the time the exception rule was triggered.

1. step a
2.0 stepb
3.0 stepc

Figure 24 - Restart Goal Dialog

This dialog box lists the subgoals of the model and requests the user to indicate
which ones would have to be accomplished over again if they were interrupted. The list
initially contains only the highest level subgoals of the model. The user is asked to click
orythe box next to a subgoal name which would have to be started over, if it were
abandoned. For all those subgoals selected, the system will present the list of the next
lowest level subgoals associated with those upper level subgoals selected. The user must
then select which of these next lowest level subgoals might also need to be reachieved if

its upper level subgoal was abandoned. The process continues to the next lowest level

39

subgoals associated with those selected at the immediately preceding upper level until the
lowest level subgoals affected have been identified. The next list presented to the user
consists of the second level of subgoals in the model which have not already been
considered as a result of examining the first level of subgoals presented at the outset. This
process continues as before until the impact of abandoning work on any subgoal as a
result of an exception rule has been considered. This portion of the analysis is probably
annoying to the user but is required to ensure that the user has considered all the possible
effects of an exception rule being triggered. When the model building process is complete
and a user wishes to execute a model this exception rule return information will tell the
system where to go under any circumstance when the goal of the exception rule has been
achieved. If no subgoals are specified for the return to the main model, the system
automatically assumes that work on the task can be resumed at the step of the method

which was interrupted because of the exception.

When the user has completed the process of defining where to return in the task
model following accomplishment of the exception rule, the system again checks to
determine if any goals/subgoals exist without specified methods. With the setting of a new
subgoal as a result of creating an exception rule, the user is then required to describe a
method or alternative methods to accomplish the new goal/subgoal. The process
continues until all steps of all methods defined have been marked as primitives as was the
case during the initial phase of the model building process. When all steps have been
identiﬁed as primitives, the user is again queried to determine if any additional exception
rules can be defined. If so then the exception rule creation process continues; if not the

system marks all exception rules to be "complete”.

40

Impass Resolution/Overcoming Failures

The final phase of the analysis process is presented in the Introduction To Impass

Resolution dialog box of Figure 25.

Impass Resolution Transition Dialog

You have completed defining exception rules for your cognitive task model.

If an exception rule is triggered during the execution of your medel, the task which
you were working on at the time the exception rule was triggered would be
abandoned and a new task goal would be set for accomplishment.

When that goal has been accomplished, you will return to your task model.

The system makes the determination as to where you go and based upon the
information you have provided.

Next, you will be asked what you would do if any primitive level steps of any
method you have defined fail.

You are required to think of what can go wrong in terms of a step failing. You will
ask to indicate what steps may likely fail as a result of your experience.

This will force you to think about more altesnatives for overcoming the steps
which could fail and make your model more complete.

Figure 25 - Introduction to Impass Resolution Dialog

This phase is a further extension to the GOMS analysis process. An impass is a
failed step. A step identified as an impass may potentially fail during the execution of the
task model. Resolving such impasses requires that the user give careful consideration to
asgessing whether a sufficient and comprehensive set of alternative methods have been
defined for each subgoal. If an appropriate alternative method has already been defined to
cover the impass then the sy;stem will automatically select an alternative from those
defined and attempt to accomplish the subgoal. This is referred to as back-tracking. Ifa

method fails due to the failure of a step, the system will select the left-most method under

41

that subgoal if one exists and attempt execution. The system will continue in a left to right

direction attempting to accomplish an alternative method which has been defined.

Following this Introduction To Impass Resolution, the system presents the

Primitives Which Can Fail dialog box. This dialog box is presented in Figure 26.

Primitives which can fail Dialeg

Please check all primitives which can fail

{0 determine position of beginning of text
& (] move cursor to beginning of text

B (] press mouse button down

[J determine position of end of text

8 [J move cursor to end of text

[J verify correct text is selected

[release mouse button

8 [press the command key

O press the 'x* key

[release the ' key

" Help

Figure 26 - Primitives which can fail Dialog

The Primitives Which Can Fail dialog box presents the user with a list of defined

14
£

primitives generated during the model building process. The user is requested to click on
the box(s) next to each defined primitive which can likely fail during the execution of the
task model. If any primitive can fail the user is presented with the Impass Resolution

dialog box of Figure 27. This dialog box presents the methods containing the primitive

42

step identified along with alternative methods for each subgoal to which the primitive step
is related. The user may then examine the methods and subgoals which would be affected
by the failed step. If a method is related to a subgoal which does not have any alternative
methods, the user may allow that subgoal to fail or choose to develop another alternative
method to overcome the impass if the step fails. If the user chooses to allow the subgoal
to fail as a result of the impass and there are no alternative methods, the system will
display the impact of the subgoal failure on the accomplishment of other higher level

subgoals.

. impass Resolution Dislog

if the conditions listed below are all true, then according
to your model, the method ‘use command key' can be
used to accomplish the goal of "issue the CUT
command’.

Help

However, if the step 'release the 'x' key', which is part of
this method, fails, this method will fail to accomplish the
goal.

Please click on the button which indicates
how you wish to resolve the problem.

Conditions [all true] which selected the
method use command key:

user knows command key equivalents

Figure 27 - Impass Resolution Dialog
If a step which can fail is part of a method whose subgoal has other alternative

methods defined, these alternatives will be displayed. The user may then consider if an

existing alternative method can be triggered to overcome the impass. If so, the user will

43

be requested to check the conditions of the selection rules for each potential alternative to
determine if conditions of an alternative method are shared with that method which would
fail as a result of the impass. If conditions do not match then the alternatives will not be
selected by the back-tracking routine. The user may modify a selection rule for an
alternative method via the edit selection rule command from the pull down menu if and
only if such a modification is appropriate. If none of the predefined alternatives are
appropriate, the user is instructed to select the create new alternative method choice or to
allow the goal to fail. This process is repeated for each step which is selected by the user

as a potential impass.

When all impasses have been addressed the user is presented with the Model
Definition Complete dialog box as depicted in Figure 28 and instructed to respond

appropriately.

- Model Complete Transition Dialag :

You have now completed the development of your cognitive task model. To review
your model and to make any changes in the model you have created, press OK and
then use commands from the Navigate menu to select any el=ments of the model for
review.

If you wish to make a change to your model, select the appropriate command from
the Edit menu, indicating what you would like to edit. You will then be presented with
the appropriate dialog box to implement your desired change.

You may also execute your model. The execution of your model begins with the top
level goal and works downward or backward. Select Execute Modei from the
Navigate menu.

‘You will first be asked to seiect the conditions from a list of those specified by the
selection rules you developed to discriminate between alternative methods for
accomplishing the ‘op level goal.

if there are no alternative methods at this level, you will be asked if you have
completed a specific step. If not, you will progress downward theough your model.

Press OK, and select the apprapriate menu and menu command to review, edit, or
execute your model.

Figure 28 - Model Definition Complete Dialog

45

Navigating and Editing a Model

When the user completes the development of a model, or when the user exits from
the GUIDANCE mode of operation by canceling a dialog box, he/she will be able to view
the various parts of the model in a graphical representation. The following presents a list

of ways in which the user may view the various parts of the model.
Viewing the Model

To view the top level goal, the user must pull down the "Navigate" menu as
depicted in Figure 29 and select the item entitled "View top level Goal." This action will
display the top level goal of your model and any method or methods associated with it.
Alternatively, selecting "View Exception Rules" from the navigate menu will display the

exception rules of the model.

culpaste.cat

IEM File Edit

Navigate

. View As Text
Legend: - .
Yisw Wop lrvel gosl
Viow Eepeplinn Rales
View goal...
Condition View goal containing...
' uidanes
< Execute Model
Method

- Figure 29 - The navigate menu

46

When reviewing any graphical representation of a specific model, the user may
double click on any node representing a subgoal for which a method or methods have been
defined. This action will result in the display of the methods defined for accomplishing
that subgoal. This will move the user deeper into the graphical representation of the

model.

At any time when reviewing a model, except when reviewing the top level goal of
a model, the user may double click on the node at the top of the screen which contains the
name of a subgoal. This action allows the user to view a rule which uses that subgoal as a

step in a higher level method(s).

47

By selecting "View Goal ..." from the Navigate menu, the user will be presented
with a list of all the subgoals defined in a specific model in the View Goal dialog box as in
Figure 30. Choosing one of these subgoals, and then clicking on the OK button results in

the selected subgoal's rules being displayed.

Select a goal to view

Help

issue CUT command

issue PASTE command
move text via cut and paste
paste text

sclect insertion point
select text

Figure 30 - View Goal Dialog

By selecting the "View Goal Containing ..." from the Navigate menu, the user will
be presented with a list of all the steps in the model in the View Goal Containing dialog
box of Figure 31. Choosing one of these steps and clicking on the OK button causes the
system to present a list of all of the goals/subgoals which contain that step in the View
Goal dialog box of Figure 30. The flow diagram for these View Goal dialog boxes is

presented in Figure 32a.

48

Select a step whose parent you

wish to view "‘Help

click mouse button
cut text

determine position of beginning
determine position of end of t
determine position of insertion
issue CUT command

issue PASTE command

mave cursor to beginning of tex
move cursor to CUT

move cursor to Edit on menu ba
move cursor to end of text
move cursor to insertion point
paste text

Figure 31 - View Goal Containing Dialog

49

LV Ul SpuBmILIO)) NUSJ [BOD) MITA 10§ wreiderp mo[j 5130 - vzg amBLy

¢uesed
1< 8Aey dels Bofeiq 1sr deis o
pelosjes $80Q i

*Bujuieluoo
feob o 09
Bojeiq 1sr 1eon e

saj

4

LV ul spuswio)) nudpy Sy uondedxy pue 9y uonodsag Joy wrerderp moyy o180 - qze undig

seiny
AL Boreig 4p3 Boreid isn
:o_u.amﬂxm einy uondedxy einy uondeox3 cg.mva%xm =
————
en Boteig up3 pa— Boteiqg 1sn sejny
:o_so__om MON e|ny uooeles e|ny uoposles uogoe|es ¥P3

LD ut spuewwo)) nudpy Juming) pue Junipy Joj weiderp mofj o180 - og¢ amS1yg

iisixe
S aweu Jeyl yim
8 e se0(]
ON
S34 ON SAA ON
1yD ux3 pue Boreiq ¢ POYIPOW USBQ

J0Up:
SUEN URS o~

f

ON

Boreig
opi4 Buisixy
eoeidey

Jolp3

o SWEN POLIGIN

puadof woy 8pou JO pui|
apou Bexq

Jonp3
sweN feod

Making Changes to a Model or Editing

The logic flow diagrams for editing a model in the CAT modeling system are
presented in Figure 32b, and 32c. The user can change the name of any goal, condition,

method or step in a model by following these simple steps:

1. Display the rule containing the item whose name is to be changed using the Navigate
capabilities of CAT.

Select the item on the graph by clicking on it.

Move to the Edit menu, pull down the menu and choose Edit Selected Item.

Make the desired changes in the dialog box presented.

A S o

Click on the OK button of the dialog box when finished making changes.

The dialog boxes presented to the user for making edits to a goal name, condition
name, method name or step name are presented in Figures 33, 34, 35 and 36 respectively.
In addition to the name changes which can be made while interacting with these dialog
boxes, the user will be presented with an area in which notes can be entered. The notes
placed in these dialog boxes become attached to the goal, condition, method or step being
edited. Considerable text can be entered in the note areas of these dialog boxes. When
the user is reviewing a model in its graphical representation these notes will be displayed in
the lower right box of the displayed portion of a graph when the cursor is placed on any
node of the graph.

53

Edit goal

Help

issue CUT command

BJ All methods defined

Figure 33 - Goal Edit Dialog

~Help

Name:

user knows command key equival
Note:

Figure 34 - Condition Edit Dialog

54

Edit method

~Help

bse command key
Note:

Figure 35 - Method Edit Dialog

Help

press command key
Note:

/ & Primitive O Can Fail

Figure 36 - Step Edit Dialog

55

The user can edit (i.e. modify, delete, insert, etc.) any selection rule for a goal or
subgoal being displayed by choosing "Edit Selection Rules ..." from the "Edit" menu. The
Selection Rule List dialog box of Figure 37 is presented which allows the user to view all
of the selection rules for the current goal or subgoal at the top of the graph displayed.

This dialog box contains buttons for editing, deleting, or inserting a new selection rule. If a
specific goal or subgoal has only a simple method then there is no selection rule to be
displayed and the menu item will not be selectable. By clicking on the arrows above the
box presenting the selection rules, the user can move through the list of selection rules

related to the goal or subgoal which appears as the top goal/subgoal of the portion of the

graph displayed.

Edit Selection Rules...

Selection Rules for goal: issue CUT command ~Help

<::I 10f1 l:>

(IF
user knows command key equivalents
THEN TRY

use command key

- Comment

Figure 37 - Selection Rule List Dialog

56

The same process described above for editing selection rules applies to the editing
of exception rules. To edit (i.e. modify, delete, insert, etc.) any exception rules for a
specific model, the user can choose "Edit Exception Rules ..." from the "Edit" menu.
Upon choosing this menu item, the user is presented with the "Exception Rule List" dialog
box of Figure 38. This dialog box presents a list of all exceptions and contains buttons for

editing, deleting or inserting a new rule.

Edit Exception Rules... @%

Display an exception rule to modify or create a Help
new exception rule.

<:|' 1of1 E:.J>

iIF

- Comment

overt task
THEN TRY
behave analysis

Figure 38 - Exception Rule List Dialog

/

Changing Step Order

To modify the ordering of steps of any method, the user must display the graphic

portrayal of the method he/she wishes to edit. The order of the steps of the method

57

displayed can be changed directly by clicking the mouse on a step whose position in the
graph needs to be changed, and while continuing to hold down the mouse button drag the

step vertically until the step is in the desired location in the method.

To indicate that a consecutive series of steps can be executed in any order or in
parallel if possible, the steps can be grouped employing the graphical user interface of the

system. To group a series of steps, the following must be performed:

1) Select the steps using one of the following two methods:

a) Enclose the steps in a rectangle by clicking the mouse down, in a position
outside, above, and to the left of the first step to be grouped. Then drag
the mouse with the mouse button down to a position outside, below and to
the right of the last step to be grouped.

b) Select the first step by clicking on it. Then select subsequent steps by
clicking on them while holding down the shift key.

2) After selecting tiie steps by either method described above choose "Group

Simultaneous Steps" from the "Edit" menu. This will complete the grouping

process.

If the user wishes to ungroup a series of steps which have been grouped, the user
must select the steps to be ungrouped using one of the methods described above and

choose "Ungroup Simultaneous Steps” from the "Edit" menu.

/
Adding a New Method to a Model

The user may add a ncw method to the goal/subgoal currently being displayed by

choosing "Create New Methods ..." from the "Edit Method" menu. The user is then

58

presented with the "New Method" dialog box which was previously described for the
GUIDANCE mode of operation. This dialog box allows for the creation of a new method

and its accompanying series of steps.

Adding a Step to a Method

A new step can be added to an existing method for the goal/subgoal currently
being displayed by selecting any method node or step node on the display, indicating the
location after which the new step is to be inserted, and then choosing "Create New Step
..." from the "Edit" menu. The user is presented with the Step Name Editor dialog box
which was discussed in the above under the "Edit Selected Item" command of the "Edit"
menu. The new step will be added directly under the method node selected or the step

node selected.

Consolidating Steps into a New Method

The user may also wish to consolidate some of the steps making up a method.
During model development if more than nine (9) steps are defined for any given method,
he/she is forced to go through a step consolidation process. However, during the editing
phase of model development, the user may wish to consolidate some of the steps in an
existing method. To do this, the user must select the steps he/she wishes to consolidate
us;ng one of the two methods described for grouping steps. Then the user must choose
"Consolidate Steps" from the "Edit" menu. The steps will be consolidated into a new
mechod and the user will be prompted to enter a name for the goal/subgoal of the new

method, as well as a name for the new method.

59

Graphical Editing

A much more direct process for editing a condition, goal, method or step has been
incorporated into the CAT modeling system. This process is a graphic editing process.
For any given portion of a graph currently displayed, the user can insert or delete a node.
To insert a node the user must select the appropriate type of node to be inserted from the
legend on the left column of the display depicted in Figure 39. While holding down the
mouse button, the node can be dragged from the legend area and inserted in the
appropriate position on the graph displayed. To delete a node from the graph the user can
select the node by clicking on it with the mouse and then pressing the delete key on his/her
keyboard. Alternatively, the user can select the node on the graph and then choose
"Copy" or "Cut" from the "Edit" menu. "Cut" will delete the node from the display and
place the contents of the node in the clipboard. Copy places the contents of the node in
the clipboard but does not delete it from the display. The node placed in the clipboard can
be placed on the display by selecting "Paste" from the "Edit" menu which will result in
converting the cursor into the node such that the node can be placed in the appropniate
location of the graph,; clicking the mouse button completes the paste process. It is
important to note that the top level node on the graph currently being displayed cannot be

edited using this graphical interface capability.

Having moved a node to the appropriate location on the graph displayed, upon
releasing the mouse key a dialog box is displayed. The dialog box displayed represents the
type of node inserted and requests that the user enter the appropriate information relative

to the new node inserted. The dialog boxes presented using this graphical editing method

60

are identical to those which are presented to the user as a result of editing activities

enabled by choosing the "Edit Selected Items ..." command from the "Edit" menu.

, culpaste.cat
Help File Edit Navigate

Legend:

Condition

Metho+t

Step

Primith}e
Step

Figure 39 - Graphic Editing
Executing A Model

The execution mode of the CAT modeling system allows the user to run the
program created as a result of the modeling process in order to verify the accuracy of
his//her analysis. Executing a model is a facility which can be used to guide someone
through the procedures required to perform a task. This mode of operation also allows
the user to enter rather detailed descriptions of each primitive level step which must be
executed to accomplish the goal of the task modeled. The execution of a model can be

employed by a user as a decision support system, an expert system, a job aid to assist

61

someone in the conduct of a task, to develop detailed text to be employed in traditional
interactive courseware or for intelligent tutoring systems curriculum development.

Figures 40a-e present the logic flow diagram for this process.

62

LD ut ssasoxd uonndaxy [2poW Joj weiderp moy NS0 wpy amyg

PopodINs
uonNI9X3

1980 [RL,

L
ON

partey
wonNNWd |g-534
1980 3L,
ON
pa[[ooued
SeM UONNDIX? $34
183,

120D AMI2XT

4\

reos
1334 se
[eo3 urepy 19§

PPON
amnooxy

63

LVvD ut sse001d uonnaexy reor) 10y uresSerp mopy odo| -40y am8Lg

~ON

$94

poysndmooor
parrey [eo8 reod s wmaoy
s Wy

ﬂ ﬁ

mu._. foiq
80 o pagstdwoooy
\. e pored (20D g S3A N %05
uonnIsxy
{ooue) ON
Jpoiaw 1

ON

sreudoudde
1pouR
st

uonnoaxy
SAA - Poue)

64

(PRYOURY

[s

Foreiq : poqam
Te00) MIN SaA sreudaudde ON
UB 21941 S

sopEI(q

o1y
ON—P| oD MmN

1vD w ss9301d uonnoaxy poqIdpA 10§ urexSerp moyy o180 -opy Sy

papesdons | dans
_nomus ON 191008 S —
M W A 5]

uondeoxgy
AN

{poresousd
uondaox?
ue sep

pa[rej poipow
M mma T $S34 1‘

uonnoAXy
12Uy $34
“
POTOI
ANaXg

65

LVvD ut $53501d uonnosxyg dag 103 urerlerp moyy 21807 -poy amsig

[e0D MNxY
wed %
3519, 199098 N
* (dois
santuud S84
ON e 5]
S3AA
wed
SBAP wom, 13pag &
ON Sofei aannuug
anadxg A1ond)
;das
Soreiq /i
uompuo) dais (¢ S94 E.wu”wms
: {PAlIRIwED
I
ON
ON
J3qumu dars o1
papaa2ons dais da1s wuaumo L3P S oSens
qum Wy M3U T 198
ON
4
papadons dars
M wnoy

T~
Boreiq sannuug
aNnoAxg
| uonnsaxyg
S34 ¥ [ootre)
payrej dars
S3ad Qs ey

66

LVvO ut ssa001d uonnaaxy uondaoxy 103 werderp moyy 9180 -agy amirg

[opot
1 wmiag

f

3unueisa
armbaos yomgm
S[808 weIsoy

A
ON

uonnoIxy .

ON

uonnxYy
190wre))

67

eo8
1IALMO oy}
se uond9ox?
o 19§

uondsoxy
AMRXY

In order to execute a completed model, the user must choose "Execute Model"
from the "Navigate” menu. The main goal of the model to be executed will be set as the
current goal to accomplish. The system will check to determine if there is more than one
method for this main goal. If not, then the "Execute Goal" dialog box is presented as in
Figure 41. If there is more than one method then the Selection Rules Introduction dialog
box of Figure 42 is presented, followed by the "Condition Selection” dialog box of Figure
43.

Gaal Feedback Dialog

You will be executing the goal "Mave text in a document”.

z This goal has a single method defined, named “cut and
paste”, whose steps are listed below. You will now attempt
to exccute each of the steps in that method.

1. culthe text
2. paste text in new location

Figure 41- Execute Goal Dialog

68

Selection Rule Dialog

2 You will be executing the goal "issue CUT command'. This
goal has 2 methods defined. In order to select one or more
appropriate methods for executing the goal, you will now
be presented with a list of conditions to choose from.

Figure 42 - Selection Rules Introduction Dialog

Execute Conditions Dialog

To accomplish the goalfsubgoal of *issue CUT command”, there are 2 methods to
x choose from. The 2 methods are named "use command key" and ""use menus".

Click on each box whose condition applics at this time. These conditions will be
used to select the method to use.

[J user knows command key equivalents
[user doesn't know command key equivalents

Figure 43 - Condition Selection Dialog

69

If the "Condition Selection" dialog box is displayed the user is requested to check
the appropriate conditions which apply at the current time. The system will then search

for the appropriate method associated with these conditions.

During the execution of a Selection Rule, the user may also generate exception
conditions by selecting the Generate Exception button of this dialog box. This button will
be available whenever the user is selecting Selection Rule conditions, whenever a goal or a
step was failed and whenever a primitive step is being executed. If a selection rule is not
triggered the "Goal Failed" dialog box depicted in Figure 44 is presented. If on the other
hand a selection rule is fired the user will be presented with the "Execute Method" dialog
box of Figure 45 and instructed to execute the method. If the execution of the method
fails the system will check for another selection rule whose conditions were checked in the
"Condition Selection" dialog box. If another method can be triggered then the "Method
Failed" dialog box of Figure 46 is presented, followed by the Execute Goal dialog box of
Figure 41 in preparation for the execution of a different method. If another appropriate
method cannot be found then the system will present the "Goal Failed" dialog box. On the
other hand if a method executes successfully then the "Goal Accomplished" dialog box of

Figure 47 is displayed to the user.

70

Goal Failed Dialog

The step "issue the CUT command" of method "'cut text" has failed.
There is no other appropriate method under the current conditions.
Therefore, the goal “'cut the text" will fail to be accomplished.

Figure 44 - Goal Failed Dialog

Execute Method Dialog

2 The conditions selected indicate that the method "use command
key" should be executed to accomplish the goal/subgoal of
“issue the CUT command". We will next proceed to the steps of
this method, which are listed below.

press the command key
press the 'x' key
release the '’ key

tadil A

release the command key

Figure 45 - Execute Method Dialog

71

Methad Failed Dialog ,

The step *'j ress command key" of method '‘use command key has
failed. The system will try to accomplish the current goal/subgoal of
“issue CUT command by using the method ""use menus", which is also
applicable under the current conditions.

Figure 46 - Method Failed Dialog

Goal Accomplished Feedback Dialog

2 You have just successfully executed the
goal "'select the text”, by executing every
step in the method “select text by
dragging through it".

Figure 47 - Goal Accomplished Dialog

When a method is executed, each step is tested to determine if the step involves a
GO TO and if the step involves an IF-THEN-ELSE decision structure. If'the step is a GO
TO, the system sets a new step as the current step to be executed. If the step involves a

set of conditionals then the user is presented with the “Step Condition" dialog box of

72

Figure 48 and required to respond to the truth of the conditions presented. If the
conditions are true the THEN part of the decision structure is fired and the step is checked
to determine if it is a primitive. Ifit is not a primitive then a new goal is set for execution.
If the truth of the conditionals is not satisfied then the ELSE part of the decision structure
is fired and its step is tested to determine if it is a primitive. If not a new goal is set for

execution.

Yes or No ? ' @%

Is the condition *do it" true?

~Help

Figure 48 - Step Condition Dialog

If any step being executed is a primitive step then the system checks to determine if
the step defined in the model can fail. If the step cannot fail then the Execute Primitive
di;log box of Figure 49 is presented. If the step can fail then the "Query Execute
Primitive" dialog box is presented as in Figure 50. Depending upon the user's response to
these dialog boxes the system will return a failed step or a successful step. If the step fails

the system will return a failed method or goal. If a primitive level step succeeded the

73

system will then attempt to determine if any exception conditions weie generated. If not

the system will select the next step in the method for execution.

Execute Primitive Dialog)

To accomplish the goalfsubgoal of "select the text’, the
method "select text by dragging through i’ must be
executed. The first step of this method is ""determine
position of beginning of text". Please execute this step
now.

Note:

Figure 49 - Execute Primitive Dialog

74

Query Execute Primitive Dialog

x To accomplish the goal/subgoal of "'select the text”, the
method "select text by dragging through it must be
executed. The third step of this method is "'press mouse
button down''. Can you successfully execute this step?

Note:

Figure 50 - Query Execute Primitive Dialog

75

If exception conditions are generated by the user, the system will set the goal

associated with the exception rule as the current goal to be accomplished and will attempt
execution as for any other method. To determine which exception to generate, the
Execute Exception Dialog box depicted in Figure 51 is presented to the user. This dialog
box allows the user to specify which conditions are currently in effect, and depending on
the user's response, an appropriate exception is generated. Next, the user is presented with
the Execute Exception Rule Dialog box of figure 52, which informs him/her of the
exception being generated. When the exception rule goal has been accomplished, the user
is presented with the Exception Rule Accomplished dialog box of Figure 53, and the
system will restart all the subgoals required when execution returns to the main model.
The system will continue the execution process until a method fails and the goal cannot be

accomplished by way of any other alternative methods or until all subgoals succeed.

76

Execution Exception Dialog

z An exception is being generated. You should check the conditions below which are
currently true. These conditions will be used to decide how to respond to the current
exception.

[J ship is under attack

Note:

Help

Figure 51 - Execution Exception Dialog

77

FE R B R EEENE N NN N W™ & N N N

Exception Rule Dialog

You have indicated by selecting a set of
exception rule conditions that your current
goalisubgoal is to he abandoned. The new goal
to be achieved is "avoid incoming missile®.

Note:

Figure 52 - Execute Exception Rule Dialog

Exception Rile Accomplished Dialog

You have accomplished the exception rule goal
of "avoid incoming missile". You will now be
returned to executing your main goal at the
point you were at when the exception was
generated.

Figure 53 - Exception Rule Accomplished Dialog

78

Formative Evaluation of Modeling Capability

There were several iterative phases to developing the computerized aid
implementing this GOMS analysis process. The first phase included a conceptual analysis,
a requirements analysis, system design and system development. The second phase
consisted of an evaluation of the aid. This evaluation gave insight into the aid's
performance and consequently into how to improve the aid. The information and
knowledge gained from this evaluation was then used to iterate through the design cycle
and improve the tool. The evaluation phase focused upon investigating the accuracy and

consistency with which cognitive models could be generated by using the aid.

The purpose for developing the aid was to assist individuals, naive about cognitive
science, in eliciting, organizing and representing their task knowledge in the form and
structure of a cognitive task model. Evaluating how well individuals naive to the cognitive
task modeling process can represent their task knowledge using the aid can provide insight
into improvements to the aid, as well as, to determine to what extent such systems can

reduce requirements for cognitive analysts in the modeling process.

Since this research was exploratory development in nature; the current literature
did not contain any adequate metrics to evaluate the effectiveness of such a system. The
initial evaluation of the system involved a relatively simple well structured task to serve as
a baseline from which future improvement and extensions could be made. The questions
which needed to be answered by this evaluation were: 1) How accurate and consistent are
the cognitive task models déveloped using this aid, and 2) How could the aid be improved

to facilitate the cognitive task modeling process?

79

Methodology

Subjects: A total of forty two (42) test subjects were selected from a pool of
secretaries skilled in word processing within the Department of Industrial and Systems
Engineering of Virginia Tech. Of the forty two subjects selected a total of forty (40) were
used in the analysis. One subject's data was not used since the subject was under a
personal time constraint and did not complete the task. Another subject's data was not
used due to a fault in the system during the experimental session. Each test subject was
paid five dollars ($5.00) for participating in the experiment. Each subject participating in

the experiment was selected based upon their ability to perform the experimental task.

Experimental Materials and Equipment: Two microcomputers were employed
during the conduct of the experiment. An Apple Macintosh with system software 7, a
mouse input device and Microsoft Word version 5.0 was used to screen potential
participants. The actual experimental task was performed on a WIN 386 IBM PC
compatible computer running DOS version 5.0 and Microsoft Windows version 3.0. The
WIN 386 was equipped with a mouse input device, a VGA color monitor and eight (8) mb
of ram. The automated cognitive analysis tool software was run on this platform during

the experimental trials.

Experimental Procedure: The experimental procedure consisted of three stages.
The first stage involved screening potential participants to verify the subject's ability to
expertly perform the task which was to be described employing the cognitive analysis tool.
This stage served as a measure of the test subject's ability to perform the task which was
later to be described during the experimental test trial. The subject passed the screening

task if he/she could perform each step of the screening task without using the help facility

80

or the user manual. The subject was therefore required to retrieve knowledge about task
performance from memory without any assistance. The task to be performed during the
screening test, and to be described during an experimental trial using the CAT modeling
system, consisted of a simple editing task involving the Cut and Paste procedures for
moving text in the Apple Macintosh environment running Microsoft Word version 5.0. A
model adapted from Kieras (1988) describing the task to be modeled by the students is
presented in Figure 56. This model is referred to as the baseline model representing a
cognitive scientist's analysis of the tool. The instructions to each potential participant
including the operations to be performed and the text on which these operations were to

be performed appear in Table 1.

If the subject was able to complete each operation described without error, he/she
was retained for experimental trials. If not the subject was excused from any further
participation and paid one dollar (31.00) for his/her effort. If a potential experimental
subject was able to complete the screening task without fault, he/she progressed to the
second stage of the procedure which consisted of a familiarization of the CAT modeling

system.

81

Table 1

Task Explanation for Screening Session

During this session you are to perform the following operations on the text

displayed on the computer screen.

FOLLOW THE STEPS EXACTLY AS DEFINED.

Operations to be done on the text.

1.
2.
3.

4.

5.
6.
7.

Select the word "out" in line 6.

Cut the text with the cut menu command.

Move the cursor to the bottom of the paragraph and insert the text by using the
paste shortcut/command/keyboard equivalent/quick keys.

Select the text beginning in line 9 with "degrees" and ending in line 10 with
"Virginia."

Cut the text with the cut shortcut/command/keyboard equivalent/quick keys.
Move the cursor to line 1.

Insert the text with the paste menu command.

Text to Perform Operations on:

W IO WU B W) e

Text Example

The College of Engineering has a reputation for offering an excellent
education for the student who desires to obtain a baccalaureate degree.
Today's engineering freshman class has an average scholastic achievement
score of 1200 out of a possible 1600. This is significantly higher than the
mean national score of 906. By graduating more than 1,000 students each
year, the college consistently ranks among the top ten in the number of
baccalaureate degrees granted. The College of Engineering is the second
largest college at Virginia Tech. Graduate and undergraduate enrollment
has increased 44% from 1976 to 1988. The greatest increase has been in
graduate enrollment

82

The familiarization session consisted of three parts. First, an explanation was
presented of the CAT modeling system by the experimenter, including definitions of
GOMS terminology, as that terminology related to an example problem describing a
worked out model of how to "prepare to drive a car", Figure 54. Second, the
experimenter worked through the "prepare to drive a car" example using the actual aid.
During this process the experimenter explained all of the features of the aid while
interactively inputting the model into the system. Third, the experimenter requested the
subject to interact with the system. The subject was provided with another demonstration
model which addressed how to "prepare an envelope for mailing" (Figure 55) and was
instructed to input the model into the system using the features described and
demonstrated. During this part of the familiarization, the experimenter provided feedback

and answered any questions the subject had about interacting with the aid.

The last stage of the experimental procedure involved having each test subject
interact with the CAT modeling system to build a task model describing how to move a
piece of text using the Cut and Paste capabilities of Microsoft Word for the Macintosh.
Table 2 presents the explanation of this session provided to each subject. In addition to
the instructions and explanation presented in Table 2 the experimenter made specific
facilitation's to help each subject understand how to use the tool when the subject was
having difficulty. If the subject started to define primitive steps for accomplishing the top
level goal, the following was said, “You are probably starting at too low a level of detail.
Think about the high level steps necessary to accomplish the top level goal. You will be
able to define the primitive steps for each high-level goal later on. You can look at the
methods in the previous session to help you". If the subject defined two primitive actions
per step, then the following was said, "You should define only one primitive action per

step. There is a way to define concurrent actions".

83

(*SUOTITE JWALMOUOD ST WA MOYS O1 X0q

sy £q paySTySTy re , UMOP 11S,, PUE , T8O OIUT 2A0W,, SAR1S 3 :INON]) "[SPOW UOHBASUOWIP Jed € 3ALp 02 aredaty :#¢ aandtg

A9y saowmas ¢ dats

Aoy wry “p dais

¥001 ut £33 wasut "¢ dais

Y01 01 A3X 2a0w T dais

¥201 Jo uontsod atuLep 1 dars

3|puey J00p 8B 5 dais

uado Joop {nd ‘p dats

31pueg s00p 137 ‘¢ dais

Jpuey JOOP 01 pury Jaow "= dais

arpuey 100 Jo uonisod umusp | dars

pausIse] 51 1§9q 1835 AJLwaA 9 d;
soed u dipo 119q 1e9s ind *¢ dns
do 159q 1298 Jo uonisod amuLnop "y dans
APOQ SSODE){aq 1895 sA0us ¢ das |

11q 1235 JO uonisod uTuLap '] das

uo 113q 1835 1nd -7 dsis
aq 1898 qrid T uu.m!_

-

84

wnop 1S °T nsu. _

ﬁnll 1095 U1 us 7 43S |

red onn sa0w | d3n

——

D ¢ dapap o) dnedasg

Joop usdo "7 das
JOOp 20N 't AN

1000 PIROL uad: b 1e0 m 115 '] d31s

Jeo ut 198 1 d3is

Joop uado ‘| auﬂw\ ™

J00p paxdoun uado

“|opOtL UONENSUOWSP JUI B [TJA : 6 2an3Tg

9dojeaus no §1 durels Kjusa ¢ dors
2dorsaus uo dures and ¢ dais

durers ussiow ¢ dars

durers soe1d 01 uonisod awuwep 1 dais

341U WLt uad 2a0way ¢ daty | adotaaus wo dures soe1d °7 dors

SSUPPT WINISL AU "¢ A8

SS3IppE Winiad Jo uonisod 1331300 AT AJuaa ¢ da1s
SSuppE Win12J Jo vonisod 01 usd saow ¢ dais
ssauppe wmat soepd 03 vomsod sunusp |1 das

$SOIPPEt MUw 01 uad € o5n

,
UQ SSEIPPT WINGS: IRE T N8

-~

Posmncns

Jadums 20uns saows: ¢ UM

. adojaaue uo saJurces saqaru ysnd “y dais
uonNISOd 133100 3ABY AJUIA { dats
$335pPE w1y JO vonisod 01 dures 19Qqru saow 7 dais
ssappt wmas 2oeqd 01 uonisod sutuwNiap | dars

3adimes SSAIPHT J9QQIU 95N

adogaana ue amday,)
85

—— aJojaaus o voO
sassasppt soeyd * dars

odojaaus wos) usd aaowss "¢ dars
SS2IPpt SulTew AU “p dANS

vomsadd 122002 saey AJusa ‘¢ dais .
m ! £ ue ssarppe Sunrews ind -] dais
ssasppt Sutjrewy Jo uonisod o) uad saow 7 dos pE Sunr !
ss21ppt suirew soeyd 01 uoMsSod awuLNp *1 dors “

w
_

I N IS GE EaE G BN I B I BN B B e
IS BN e

(8861 sesony way padepy) “yse reaudwLRdxs oy 10y I5Bq S5PIIMOUY SUTaseq 3O TPPOW :9G 2an3yg

UOTIING 75003 eI °¢
PR 51 IBY] AJLa 'y

T O JOLIND 240

Uaop UOTBNG N0 srad 7

I3G MDA U0 P, 0) ORI 3A0W *|

T W) 3wd DHrss TN uNy)
$43Y pURUNLOD AOLLY \UOP JT

1

UONING 7ANOM 0w *
PIDIEE N 10D ALRA r

170 o sosro saow ¢

Umop UOTNG MNow raud 7

JBQ KD UO 1P, OF JORID A0 |

MDD DAL 1PS DM N SR
243N PREUAICD MO | UOP JT

[

UDTING JFNO IFWIFAL [
PAIOTIE 1 X RIS AJURA "9
T3 JO P9 01 JORIND 3A0W ¢
;N Jo M Jo UOTBOd RIWLLIPP *p
RA0p JOUN IO 11324 ¢

o1 Jo Sunandaq
01 JORLXS 3A0M <7

3 jo hunansaqg jo
uonBod ATWSRP |

-

RACE VOGS DTS | F
g 3

z

>

)

£

»

- P4

paruRncs [A7 wwe] T s

-

3

2

/
\w-

Table 2

Task Explanation for Machine-Aided Session

During this session you will use a tool called CAT. The tool will promet you for
information about how to accomplish a goal.

Remember to describe both the physical and mental actions necessary to perform
the task.

The goal is:

Move a pi~ce of text using cut and paste while using Microsoft Word for the
Macintosh.

You can begin this session by double-clicking the CAT icon and selecting a new
model with the top-level goal of "move a piece of text using cut and paste"

Assumptions

When defining the task yov -an assume the following:
1) the Macintosh computer .s on,
2) Microsoft Word is loaded,
3) the text module is loaded, and
4) the following are examples of primitives for this session:
Physical primitives

moving the cursor

double-clicking the mouse button

pressing a key

releasing a key
Mental Primitives

verifying an action,

Example use of the primitives:

Goal: move a file to the trashstep 1. determine position of file
step 2.move cursor to file

step 3.press mouse button down

step 4.verify correct file is selected

step S.move cursor to trash

87

Following completion of the model building process each subject was requested to
match each step which they defined with a corresponding step description from the
baseline model. This comparison matching was done to ensure that subject-generated
semantics were consistent with the names ascribed to each step in the baseline model.
Instead of having the experimenter make judgments about semantic similarity, the subjects
were asked to make these judgments themselves since they would best understand how the

terms they generated were to be interpreted.

Performance Measures: The performance measures for this experiraent were

designed to asses the capability of the system to elicit accurate and reliable cognitive task
models from a user. There were two dependent measures calculated based upon what
each subject-generated model was compared to: (1) subject model versus a baseline
model and (2) subject model versus other subject models. Comparisons of each subject's
model to the baseline model were made to determine a measure of accuracy of the models
generated. The baseline model was adapted from Kieras (1988) and is presented in Figure
4. This adaptation removed any "return goal accomplished" statements from the model
generated by Kieras since this is automatically inserted by the tool as the last statement of
each method defined. Short cut key methods were also excluded in the adaptation of the
Kieras model since our pilot study indicated that only a small percentage of users
representing the population of secretaries knew these short cut keys. Each high level
method and each primitive level method generated by a test subject as a result of model
development was compared to this baseline model. Accuracy was calculated as the
pe';'cent match between subject generated methods and the corresponding baseline
methods. The accuracy for a given method was computed by dividing the number of steps
of a given baseline model method that a subject defined in his/her corresponding method
by the total number of steps described in that baseline model method. This was done for

each method of the baseline model (see Table 3).

88 °

Comparisons of each subject model versus other subject models were made to
determine the consistency of modeis generated between subjects. Each model generated
by each subject was compared to each of the other subject models. Consistency of the
models provided a measure of variation in the models generated. If the system is to be
effective in generating cognitive task models of domain expertise, it must generate similar
models from different expert's on the same well structured tasks. Consistency was
calculated for both high-level methods and primitive level methods. Consistency measures
were calculated as the percent match between a subject generated step of a given method
and the corresponding step in the same method across all subjects. The number of
subjects who had the step in a method was counted, as was the number of subjects who
did not have the step in their corresponding method. The consistency of a step was
calculated by dividing the maximum of either the number of subjects who described the
step in the method or the number of subjects who did not describe the step in the given
method by the total number of subjects. Method consistency was computed as the

average of the step consistencies within each method (see Table 4).

89

Table 3

Example Calculations for the Accuracy Performance Measure

Method: Select Insertion Point Subject

Primitive Method Steps #1 #2 #3 #4
determine position of insertion point 1 0 0 1

move cursor to insertion position 1 1 1 0

click mouse button 1 0 1 1

of baseline primitives defined by subject for 3 1 2 2

this given method

of baseline primitives in this given method 3 3 3 3

Accuracy 3/3 1/3 2/3 2/3

Note: Table values: "0" = subject didn't define
the primitive in this method,

"1" = subject did define the primitive in this
method.

90

Table 4

Example Calculations for the Consistency Performance Measure

Method: new position Subject #of # of Subject
subjects subjects Generated
who had who did not | Primitive
step for have step Method
this for this Cousistency
method method

Primitive Method Steps #1 | #H2 | #3 | #4

determine position of I [0 |0 {1 |2 2 .500

insertion point

move cursor to insertion 1 1 1 [0 |3 1 .750

point

click mouse button 1 jO0 |1 1 |3 1 .750

verify have correctpositon 0 1 0 0 1 3 .750

Note: Table values:

"0" = subject didn't define

the primitive in this method,

"1" = subject did define the

primitive in this method.

91

Experimental Analysis

The final step in the data analysis process consisted of gathering all of the methods
generated by each test subject. In reference to the baseline model, there were seven (7)
methods. These seven methods consisted of three (3) high level methods, one which
served the highest-level subgoal of "Move Text with the Cut and Paste Command" and the
others which served the two subgoals of "Cut text" and Paste text". The remaining four
(4) methods were identified as primitive methods; one for the "Select Text" subgoal, one
for the "Cut Text" subgoal, one for the subgoal of "Select Insertion Point" and one for the
subgoal of "Paste Text". A 2 x 4 repeated measures analysis of variance (ANOVA) was
conducted on accuracy scores calculated for the four primitive methods defined in the
baseline mode:. This analysis partitioned the primitive steps in each method into physical
primitives and mental primitives. This allowed for a comparison of accuracy of models in
terms of the percentage of mental primitives reported versus the percentage of physical
primitives reported. Additionally, any differences between the accuracy of descriptions for

any given primitive method could be assessed with this analysis scheme.

The analysis of method consistency involved the comparison of each primitive
method generated by each subject to the corresponding primitive methods of each of the
other test subjects. As a result, measures of the means and standard deviations for each
method across all 40 test subjects were computed. The mean and standard deviation
scores of the percent match between steps of a method yields an indication of the degree

F

of variation in the subject generated models.

92

Results

The initial intent to analyze the accuracy and consistency of both the high level and
low level methods generated by the test subjects proved to be quite challenging. An initial
assumption in this experimental evaluation was that subjects would demonstrate a high
degree of accuracy and consistency in the models generated since the task was highly
structured. The analysis of the goal/subgoal hierarchies which reflects how the methods
were mentally organized by each test subject demonstrated a considerable lack of accuracy
when compared to the baseline goal/subgoal hierarchy. Only three (3) subjects of the 40
who participated in the experiment generated models whose goal hierarchies matched that
of the baseline model. Of the remaining 37 models generated, a total of 20 different
goal/subgoal hierarchies were identified. As a result of this lack of match between test
subject hierarchies among themselves, and in comparison to the baseline model, a closer
inspection of the goal/subgoal trees was made. As a result of this examination, it was
found that many of the subject generated models consisted of primitive methods which
were either a composition of two baseline model primitive methods or a decomposition of
a single baseline model primitive method into two subject generated primitive methods.
Composition of production units is a well documented phenomenon relative to the process
of knowledge compilation (Neves and Anderson, 1983 and Anderson, Greeno, Kline and
Neves, 1983). Composition occurs during skill development when two production units,
or rules which typically are executed in sequence are combined into a single production
ux}it. Consequently, what we are seeing in this examination of test subject primitive
methods, is a variation in the manner in which they compose their knowledge about the
task, relative to the baseline model primitive level methods. Fourteen (14) subjects
composed primitive level methods differently than those methods reflected in the baseline

model. That is, of the 40 test subjects in the experiment, fourteen demonstrated instances

93

when two methods of the baseline model were composed into one method in the subject
generated model. Of the 40 test subjects in the experiment, 20 subjects demonstrated
instances where one method of the baseline model was decomposed into two methods in
the subject generated models. An example of two subject generated methods which if

composed would form a single baseline method is described in the following:

Two Subject Generated Methods

GOAL"cut text with menu”
1)."move cursor to edit"
2)."press mouse button"
3)."select cut"

and

GOAL"select cut”
1)."move cursor to cut"
2)."release mouse button

Baseline Method

GOAL"cut text with menu"
1)."move cursor to edit"
2)."press mouse button
3)."move cursor to cut"
4)."release mouse button”

In other cases a test subject may have described a single method composed from
two baseline methods. For all practical purposes, there is no difference between a
composed rule and the two production rules from which it is composed in terms of the
model description correctly reflecting how to do something. Consequently, the primitive
methods generated by each test subject were either composed or decomposed such that
they would reflect greater agreement with the baseline model where it was evident that a
subject either composed or didn't compose their methods in agreement with the baseline
model. When these adjustments were made to the primitive level methods described by

the test subjects, the degree of variation in the goal/subgoal hierarchies of test subject

94

models as compared to the baseline goal/subgoal hierarchy was dramatically reduced. The

resultant number of different trees generated was reduced from twenty (20) to three (3).

ANOVA on Accuracy Measures

The 2 x 4 repeated measures analysis of variance conducted on the percent
accuracy scores calculated on the four primitive level methods of the model revealed a
significant main effect of type of primitive (i.e., mental versus physical) with F(1,39) =
238.69, p <.0001. This significant difference in the accuracy of the type of primitive step
elicited from users indicated a high degree of accuracy for physical primitives with a mean
of 85% versus mental primitives with a substantially lower mean value of 28% .
Corresponding standard deviation scores for physical and mental primitives are .29 and .40
respectively, indicating less variation in the ability of subjects to describe physical

primitives than mental primitives.

A significant main effect for the type of method described by students was also
found for measures of accuracy E(3,117) = 10.96, p <.0001. A Newman-Keuls test for
critical differences between the mean accuracy scores of each method revealed significant
differences at p<.05 between the Paste method and Select Text method (respectively .46
versus .64) between the Paste method and the Insertion Point method (respectively .46
versus .67) and between the Cut method and the Insertion Point method (respectively .50
versus .67). These differences are primarily due to the magnitude of variation between
methods in terms of the percent correct mental primitive steps described by the subjects.
Cut method and Paste method demonstrated dramatically low scores on the accuracy with
which mental primitives were described by test subjects as is demonstrated by a significant

primitive type by method type interaction F(3,117) = 42.65, p <.0001. Figure 57 depicts

95

"AJEMMSIY 1uslisd SE 3dA] daI§ sAamiwtg AQ AL POUIRJA IC UOTIESIUT ¢/ dandry

adA} pouisw

1X31 159}3S gisel wiod udiasul 1n9

D%

8]

wo
~ 10 o
1., 2
- 20 =
| =
-l %
Fq.o @
Len Zo 2
._..o.o E: M
1%
L S
8°0
[
_

the nature of this interaction. The Cut method and Paste method both require a "verify"
mental operator in their baseline model descripi’ ‘ns. Whereas Select Text method and
Insertion Point method require "determine position" mental operators in their baseline
model descriptions. Apparently a "verify" operator is a much more implicit step than a
"determine position" operator, even though the step of verifying an action was explicitly
identified as a mental primitive in the instructions to test subjects. Venfy operators follow
a movement of the cursor to a location on the screen, the verification of this movement is
simultaneous to the movement and may not be interpreted as a discrete step by non-
cognitive analysts. On the other hand, determining a position to begin an action is

apparently a more discrete action of which subjects are aware.

Analysis of Consistency

The conststency analysis is intended to provide data relevant to the degree of
variation between subject generated models and is therefore descriptive in nature. This
analysis provides much needed information regarding the distribution of cognitive task
models one might expect among a population of domain experts modeling a weli
structured procedural task. This type of analysis also attests to the degree of specificity
with which one can make predictions regarding the structure of knowledge of domain

experts.

The analysis of consistency for the models generated was conducted on the
methods adjusted for composition as was the case for the analysis of accuracy. However,
for the consistency analysis each subject's methods were compared to every other subject’s
methods without reference to the baseline model. The means and standard dewviations for

the consistency analysis are presented in Table 5. The table presents the consistency for

97

Table §

Summary of onsistency Results of Subject-Versus-Subject Comparison

Method Primitive Average Standard

Type Deviation
Select Text Mental 0.872 0.096
Physical 0.930 0.057
Both 0.894 0.085
Cut Text with Menu Mental 0922 0.070
Physical 0.910 0.034
Both 0.917 0.057
New Position/Insertion Point Mental 0.750 0.141
Physical 0.783 0.191
Both 0.770 0.154
Paste Text with Menu Mental 0.925 0.071
Physical 0.905 0.027
Both 0.917 0.057
Across all Methods Mental 0.898 0.091
Physical 0.893 0.090
Both 0.896 0.090

98

each method generated by the test subjects. Overall consistency of a method across all 40
test subjects is presented in the row entitled "both”. The rows entitled "Mental” and
“Physical” partition each method into means and standard deviations for the mental and
physical primitive steps of each method. The last row of the table presents the average
consistency measures computed across all methods for all test subjects. As can be seen
from the table the percent match between subjects across all methods is quite high
approaching 90 percent for both mental and physical primitives with the exception of the
"Insertion Point" method which demonstrated an average consistency of 77 percent for
the combined mental and physical primitives. An examination of the raw data for this
method indicated lower levels of consistency in terms of the absence or presence of the
"click mouse" physical primitive. Only 50 percent of the test subjects included the
primitive step of "click mouse" in their descriptions of this method. The low consistency
measure for this step relative to other steps, reduced the consistency scores for this
method. The larger standard dewviations for the “Insertion Point” method also reflects the
lack of consistency in the manner in which test subjects described this method relative to
other methods in their models. It is speculated that this method is a rather implicit method
and is assumed to be understood when subjects describe their models. In fact, this was the
only method included in the baseline model of the task which was not defined by several

subjects.

The standard deviations of the remaining methods in the analysis of consistency are
quite small attesting to the relative lack of variation in the manner in which test subjects
describe their task representation relative to each other. Reference to Table 6 also
indicates the narrow bands for the confidence limits on the consistency with which
primitive operators are reported or not reported depending upon their type. It must be
noted again that the high consistency scores for the mental primitive steps of the models

reflect the consistent absence of mention of mental primitives across test subjects.

99

Confidence Intervals for Performance Measures

Table 6

Measure Confidence Lower Upper
Level (%) Limit Limit

Physical Consistency 90 0.834 0.908
95 0.826 0916

99 0.810 0.931

Mental Consistency 90 0.869 0918
95 0 864 0923

99 0.854 0.934

Both Consistency 90 0861 0.904
95 0.857 0.909

99 0.849 0917

Physical Accuracy 90 0.780 0.874
95 0.770 0.884

99 0.903 0.751

Mental Accuracy 90 0.228 0.339
95 0217 0.350

99 0.194 0.372

Both Accuracy 90 0.683 0.773
g 95 0.674 0.782
99 0.656 0.800

100

Table 6 also depicts relatively narrow bands on the confidence intervals for
accuracy of primitive steps described, again attesting to the relative lack of variation one
can expect from expert descriptions when developing such models. Cornsequently, we can
be highly confident within a narrow range that experts generating GOMS task models will
with a high probability, accurately and consistently describe physical operators. On the
other hand, we can be confident that experts generating GOMS task models with this
computerized aid will not accurately describe mental operators and will consistently omit

them in their models.

Discussion and Conclusion

The objective of this research was to develop a computerized aid to assist subject
matter experts in the conduct of a cognitive task analysis employing a GOMS-like process
to structure their task knowledge. This knowledge in turn can be used to develop
instructional curriculum and ideal student models for intelligent tutoring. The tutoring
systems which employ these ideal student models and which structure curriculum in
accordance with the structure of knowledge specified by a cognitive task analysis process
have been quite successful. (Anderson et al, 1989; Williams et al, 1990). To this end, the
results of the design, development and formative evaluation activities of this research have
demonstrated that such an aid can accomplish the objective of structuring knowledge

about a task domain in accordance with this GOMS-like cognitive task analysis process.

The results must, however, be qualified regarding the level of detail to which non
cognitive analysts can use the tool in generating GOMS analyses. As the evaluation has
demonstrated, primitive operators associated with mental activities (i.e., implicit cognitive
and perceptual operations) are not typically described by subject matter experts. As the

results have demonstrated only 28% of the primitive mental operators of a given method

101

were accurately described in subject generated models. On the other hand, 85% of the
physical operators were accurately described in subject-generated models. This result

limits the applicability of the aid in its current version to developing models whose content

is restricted to descriptions of the rather explicit operations involved in skilled

performance. However, this restriction only applies to those not skilled in cognitive

analysis. The tool can be readily used by cognitive analysts in developing cognitive task
models. Moreover, for purposes of developing and structuring curriculum for intelligent
tutors, the models generated by the current version of the aid are sufficient. The presence

of mental operator descriptions in the content of curriculum is relatively scant since many

of these operations are implicit internal operations which simulate state changes in
working memory. The goal hierarchies and selection rules, provide a considerable chunk
of cognition and context knowledge to the models currently generated. The models
generated are accordingly more cognitive in form and structure than what can be achieved
from a traditional behavioral task analysis. Traditional behavioral task analysis focuses
upon descriptions of the behavioral steps required to do a task. While a cognitive task
analysis also provides considerable description of behavioral events, these events are
structured in accordance with what is known about production memory structures. These
structures have limitations in terms of the number of steps which can be chained together
in a sequence, as well as, conditions which indicate when or under what conditions the
behavior is to be executed. Moreover, the control of flow of behavioral sequences is also
well specified in a cognitive task analysis as a result of the linkages between the various
goals and subgoals which are accomplished by certain behaviors, and the selection rules
specified. This control of flow of behavior represents plan knowledge and strategic
knowledge (i.e., what-to-do and when-to-do-it knowledge) which is not specified in a
traditional behavioral task analysis. Additionally, the output of a cognitive task analysis is

executable as a computer program, attesting to the systematicity and specificity with

102

which such an analysis is conducted, vice a behavioral task analysis. Therefore, although
the current version of the computerized aid may superficially appear to be a variant of a
behavioral task analysis process, there are considerable differences between this GOMS-
like process and a traditional behavioral task analysis in the content, structure and form of
its output. It is this structure and systematicity which produces the dramatic effects
demonstrated by intelligent tutors over traditional CAI, based upon the output of
behavioral task analysis. Consequently, for purposes of developing ideal student models
and specifying the structure and content of curriculum, the computerized aid will have a
significant impact on the efficiency with which intelligent tutoring systems can be

developed.

Of primary importance to the application of intelligent tutoring systems, this aid
can considerably reduce the cost associated with the conduct of a cognitive task analysis.
The aid will facilitate the accessibility of ITS technology by assisting developers in the
complex process of building cognitive task models. As a consequence, the aid would lead

to a reduction in the cost to develop ITS and an increase in its breadth of application.

Implications for HCI Complexity Predictions

From a basic research perspective, there has been no known attempt to establish
statistical parameters concerning the degree of variation one can expect between the
or‘ganization of cognitive task models generated by a large sample of experts.
Consequently, the analysis conducted, from the evaluation of this computerized aid will
add a much needed statistical basis to the domain of cognitive task modeling. As was
indicated by the results, consistency in models generated was quite high after the methods

generated by the experts were adjusted to a baseline standard. It was quite surprising to

103

find the degree of variation in methods described, especially for such a well-structured
task. GOMS models have traditionally been used to make predictions about device
interaction complexity. The complexity of a device in part being a function of the time it
takes to execute a method using the device. This variation in the manner in which experts
compose their knowledge about a task domain will have an impact upon the variation one
might expect when predicting task execution time using GOMS models. For example, one
expert may model a sequence of actions to attain a goal as a single method or rule.
Another may model a sequence of actions to obtain the same goal as two or three methods
each with its own subgoal. The models are both correct. Yet predictions of execution
time for these two models will vary although they both specify the same number of steps.
The prediction of execution time takes into account the cycle time to set each subgoal.
Consequently, the execution time predicted for a goal which requires two methods will be
larger than that which contains only one method, even though the models both accomplish
the same task correctly. Therefore, in predicting execution time from GOMS models of
expertise, there will be a source of variation resulting from the way in which the expert
composes his knowledge about a task. This variation is in addition to that which is
associated with the cycle times of the various types of operators. Such variation should be
taken into consideration when comparing two devices using GOMS keystroke level
models. This may especially be true when the differences in execution time between two
devices is marginal. It may just be that the differences predicted are the result of how the
experts have structured their knowledge of the methods used to interact with the device
anlgl not due to a true difference in device complexity. For a given device and a given task,
predictions from different expert generated models will show variation as a result of the
differing number of methods they described in their models of the same interaction. One
could therefore convert expert models to novice representations of the task, since novice

representations do not assume any composition of steps in a method. That is, each step of

104

a method is treated as a single production rule. Reducing expert models to novice level
representations should then normalize the vaniation between expert models and provide
more accurate predictions of execution time when comparing two device models. This is

the strategy employed when predicting training time from cognitive task models.
Predicting Time to Learn and Degree of Training Transfer By Extending CAT

The modeling capability of the current version of CAT can be extended to produce
lower level production rules. These lower level production rules can be used to compute
and predict the time it will take a novice to learn a task which has been modeled, as well
as, to determine the degree of transfer which can take place between two tasks. The
current version of CAT generates methods which reflect expert performance. The time to
train a novice can be computed from a transformation of these expert methods to novice
level representation if greater accuracy in terms of eliciting or inferring mental operators

can be achieved.

The basic research for predicting time to learn and transfer time between related
tasks was conducted by Kieras and Bovair (1986) as a result of an approach proposed by
Kieras and Polson (1985). Later techniques for quantifying transfer of training were
proposed by Singley and Anderson (1989) based upon some of the same assumptions of
Kieras and Bovair (1986). The underlying assumption of this basic research was that the
amount that must be learned is linearly related to the time it takes to learn. The total time
it takes to learn can be determined by the number of new productions which must be
learned by the student. Since the amount of time it takes to learn a new production unit is
known, counting the number of new production rules which must be learned can predict

training time.

105

JE T B aE NN EE N I BN BN N B O

‘il N am =
{

The majority of the past research work conducted in this area focused upon a
demonstration of this underlying assumption by establishing the time it takes to learn a
new production unit and then predicting total training time. An important consequence of
this work was the establishment of a number of requirements which such models must
meet in order to predict training time. First, as Singley and Anderson (1989) found the
lowest level model possible, consistent with the Keystroke Level of analysis associated
with GOMS modeling, is required to make such predictions. That is, both primitive
mental and physical operators must be described. Secondly, these models, indicative of
the way in which experts structure their knowledge, will not suffice to predict novice
training time since expert representations and novice representatives differ in terms of how
the subgoals get composed. Therefore, expert representations must be transformed into
novice level representations of task knowledge. Experts typically have fewer rules, as a
result of composition, which represent their task models when compared to novices.
Likewise, experts, unlike novices, do not explicitly check for all feedback in the way of
prompts from a system on which they have been expertly trained, whereas novices
perform such feedback checks as explicit steps in their production rule representations
(Bowvair, Kieras and Polson, 1990). Novice rules typically consist of only a single action
or step whereas experts compose their rules into a sequence of specific actions,. as these
single actions or steps are repeatedly executed in a specific order, they then become

composed, a sign of the development of expertise.

) As to the accuracy with which predictions of total training time can be made from
knowledge of the number of new production rules which must be acquired, the results of
experimentation are quite comparable. Kieras and Bovair (1986) developed an equation
from their research which accounted for 76% of the variance in measures of total training

time. Their equation estimated total training time to be:

106

Time = 85.3 seconds + 20.3 seconds x (number of new production rules).

This measure of total training time consisted of reading time plus the time spent in
practice to learn to accurately perform the procedures of the task. The y-intercept of their
equation (i.e., 85.3 seconds) therefore represents a baseline time which indicates how long
it would take someone who knows the task procedures to read the instructions and
accurately perform the task. That is, nothing new would be learned by such an individual.
This baseline time will obviously vary dependent upon the task to be learned. However,
the number of new production rules to be learned is a highly reliable predictor of training

time.

Another study conducted by Bovair, Kieras and Polson (1988) produccd a
regression equation which accounted for 88% of the variance in total time to learn. The
task utilized in this study consisted of learning a number of text editing procedures. The
regression equation found for this study was:

Total Training Time = 683.2 seconds + 34.7 seconds x (number of new rules).

For this later study, the most important predictor variable was again the number of
new rules. From these basic research experiments, Kieras (1988) has proposed a
generalized equation for purposes of estimating training time as follows:

[.earning time = (30-60) minutes + 30 seconds (number of new production rules).

Of critical importance to making such predictions is determining how to compute

the number of new productions to be learned. As indicated by the work of Kieras and

107

Bovair (1986) and Bovair, Kieras and Polson (1988) each rule which must be acquired by
the trainee may or may not get the full learning time charge in predicting total training
time. This is because what is learned early in a training session may transfer to rules
learned later in the session. Consequently, many rules which are part of the model may
share similarity with other rules in the model and do not get the full training time charge.
One must then determine how to compute this similarity between production rules given
novice level models. The heuristic developed by these researchers proposes that there are
four possible outcomes for each candidate rule which is to be learned: (1) a rule can be
identical to an existing rule and therefore no new learning is needed, (2) a rule can be
generalized to an existing rule which requires very little learning, if any, (3) a rule can be
subsummed under an existing generalized rule requiring no new learning, and (4) a rule is
a new ru'e and must be added to the rule set being acquired, requiring the full amount of
time to learn. Examples of three of these possible outcomes, with the exception of the
identical rule case, is presented in Figure 6 a, b and c, as adapted from Bovair, Kieras and

Polson (1990) for a text editing skill at a novice level representation.

Consequently, in order to extend the current modeling capability of CAT,
processes for conducting identity matches and generalizations to existing rules must be
developed. However, the process for determining such generalizations has been explicitly
described by Bowair, et al (1988). As described in example 1 of Figure 58 a, the old rule,
NoviceDelete PS5, and the new rule, NoviceCopy.P5, are compared to determine if both
thf; verb and the noun in the goal descriptions are different. If they are both different, then
the rules are not similar at all and there can be no generalization. However, if they are
different on only one of the terms, in this case, the verb term (e.g. DELETE STRING
versus COPY STRINGS) then the rules are similar enough to merit further processing. The

remaining statements in the rule are then compared to determine if the verb term is the

108

only difference in "> remaining clauses of the rule. If so, then the verb term is assigned a

109

Fxample 1: New Rule T« Generalized With the Exiciing Rule

Olel Rule New Rule:
(NoviceDelele PS5 (NaviceCony P5
\F {{GOAL DELETE STRING) IF ((GOAL COPY STRING}
{STEP VERIFY DELETE) (STEP VERIFY COPY))
THEN (Verily Task DELETE) THEN {(Verlly Task COPY)
(Delete STEP VERIFY DELETE) {(Dnlete STEP VERIFY COPY)
(Add STEP PRESS ACCEPT) (Add STEP PRESS ACCEPT)

Generalized Rule:
{(HoviceDelpte PR
IF ((GOAL 7X STRING)
{STEP VERIFY X))
THEN {(Verlfy Task 7X)
(Delete STEP VERIFY ?X)
{Add STEP PRESS ACCEPT)

Lxamiple 2- New Ratle e Syheumed Under an Exitting (Generalization

Old Rule: New Rule:
(NoviceDelete.P5 {NoviceMove P5
iF ((GOAL 7X STRING IF ((GOAL MOVE STRING)
(STEP VERIFY 7X) (STEP VERIFY MOVE))
THEN {(VerilyTask 7X) THEN {{(VerllyTask MOVE)
(Delete STEP VERIFY 7X) {Dolete STEP VERIFY MOVE)
(Add STEP PRESS ACCEPT) {Add STEP PRESS ACCEPT)
Fxample 3 New Rulr bt Difterent From Al Evitting Rules
el Rule: New Rule
{Novicelnsert P2 (NoviceDeirta.P2
\F {GOAL INSERT STRING) IF ((GOAL DELETE STRING)
(STEP CHECK-PROMPT INSERT)) {(STEP CHECK-PROMPT DELETE))
(DEVICE USER MESSAGE insert What)) (DEVICE USER MESSAGE Delete What))
THEN ({Onlete STEP CHECK.-PROMPT INSERT) THEN {{Delete STEP CHECK-PROMPT DELETE)
{Add STEP LOOKUP MATERIAL) (Add GOAL SELECT RANGE)
(Add STEP PRESS ACCEPT) {Add STEP SELECT-RANGE DELETE))

Figure 58 :[ixamples of rules showing transfer status.
(Rovair, Kieras and Polson, 1988)

110

single variable for each instance of the verb term in each rule. The result is the generalized

rule of example 1, Figure58 a.

To determine if a new rule can be subsumed under an existing generalized rule, the
same process as shown in example 2 of Figure 58 b, defined for generalization, is
employed. Of the two rules being compared, one is an existing generalized rule and the
other is a new rule. Again, the verb and noun goal descriptions are compared indicating a
difference in the verb term (e.g., STRING versus MOVE STRING). The remaining
clauses of the rule are examined and found only to differ in the verb term description. This
being the case, the new rule is subsumed under the existing generalization and therefore
not given any learning time charge. If the rules of these examples (e.g. DELETE, COPY,
and MOVE) are learned in that order, only the rule DELETE will get the full charge for

learning time. The remaining rules will not receive any learning time charge.

The second requirement for making such predictions is getting at the lowest level

of analysis as exemplified by the Keystroke Level model of methods, and then converting

- these methods into a novice representation. One can only make reasonable predictions

regarding time to learn when the cognitive models generated represent rules which are
characteristic of novice representations. Novice representations differ from expert
representations in that each step in a GOMS method is represented as a single separate
rule. A step includes not just overt actions like pressing a key, but also covert mental
o;}erations such as attending to a prompt on a screen, locating a manual, determining an
insertion point on a display, awaiting a verbal response, etc. Novices also explicitly create
rules for checking all feedback from a system such that each prompt presented on a screen
would be checked and represented as a separate production rule. Experts on the other

hand would not describe such checks and may have different numbers of rules in their

111

representations of a specific method due to differences in the way the rules of a method
get composed by different experts. The training time for these differ=nt compositions of
rules may differ making it difficult to predict training time from this level of representation
Figure 59 a and b demonstrate the differences between a novice representation of a
method and that of an expert. As can be seen from Figure 59 b, depicting a novice's
method representation, the rule, Start Method, starts execution by adding an assertion to
memory to do the first step. Rule, Method Rule 1, then checks to see if the first step has
been asserted in memory on its condition side and then executes the step and adds a note
that the next step is the finish step. The rule, Finish Method, checks to determine if the
steps have been finished and adds the note to memory that the method has been finished.
As depicted in Figure 59 a, representing the experts rule for the same method, there are a
fewer number of rules. Those rules which were chained together in the novice version of
the method have been collapsed into two rules in the expert's representation of the

method.

112

{a) Example expert method

(SelectMethod IF {{GOAL PERFORM <TASK>)
(NOTE <SPECIFIC CONTEXT>)
(NOT (NOTE EXECUTING <TASK>)))
THEN ((Add GOAL <DO SPECIFIC METHOD>)
(Add NOTE EXECUTING <SPECIFIC METHOD>)
(<DoAct FirstAct>)
(Add STEP DO <Finish Step>)))
(FinishMethod IF((GOAL PERFORM <TASK>)
(GOAL <DO SPECIFIC METHOD>)
(STEP DO <Finish Step>)
THEN((Add NOTE <TASK> PERFORMED)
(Delete GOAL PERFORM <Task>)

(Delete GOAL <DO SPECIFIC METHOD>)

(Delete STEP DO <Finish Step>)

(Delete NOTE EXECUTING <SPECIFIC METHOD>)
(Delete NOTE <SPECIFIC CONTEXT>)))

(b)Example Novice Method
(SelectMethod IF {(GOAL PERFORM <TASK>)
(NOTE <SPECIFIC CONTEXT>)
(NOT (NOTE EXECUTING <TASK>)))
THEN ((Add GOAL <DO SPECIFIC METHOD>)
(Add NOTE EXECUTING <TASK>)))
(FinishSelect IF ((GOAL PERFORM <TASK>)
(NOTE <SPtCIFIC METHOD> FINISHED))
THEN ((Add NOTE <TASK> PERFORMED)
(Delete GOAL PERFORM <TASK>)
(Delete NOTE <SPECIFIC CONTEXT>)))
(StartMethod IF ((GOAL <DO SPECIFIC METHOD>)
(NOT (NOTE EXECUTING <SPECIFIC METHOD>)
THEN ((Add NOTE EXECUTING <SPECIFIC METHOD>)
(Add STEP DO <First Step>)))
(MethodRulel IF((GOAL <DQ SPECIFIC METHOD>)
(STEP DO <First Step>))
THEN((<DoAct First Act>)
(Add STEP DO <FINISH STEP>)
{Dclete STEP DO <First Step>)))
(FinishMethod IF((GOAL <DO SPECIFIC METHOD>)
(STEP DO <Finish Step>)
THEN ((Add NOTE <SPECIFIC METHOD> FINISH)
(Delete GOAL <DO SPECIFIC METHOD>)
(Delete STEP DO <FINISH STEP>)
(Delete NOTE EXECUTING <SPECIFIC METHOD>)))

Figure 59: Comparison of an expert level representation of a method to a novice level
representation of a method.

113

In view of these requirements for developing models which can be used to predict
time to learn, as well as transfer time, the current version of CAT must be augmented to
translate method descriptions into production rule forms such that each step of a method

is represented as a single production rule.

Translating GOMS model descniptions into a production rule representation would
be a tedious task and would impose rather strict constraints on the user. Additionally,
numerous routines would need to be developed to transform user inputs into code
executable by a production system. The objective of this research was to provide the user
with a simple interface that allows for a natural English-like description of the users task.
Moreover, for predicting training time, it has been demonstrated by Kieras (1988) that
such predictions can be made employing his "Natural GOMS Language"(NGOMSL)
notation. NGOMSL is a high level language similar to the English descriptions currently
processed by CAT which are isomorphic to production rule representations executable by
a production system. Each NGOMSL statement represents a simple production rule and
therefore, can be used to make predictions concerning training time and transfer as is the
case with production rule representations. These NGOMSL statements, however, are
much easier to work with from a computational point of view and are consistent with the
current CAT version. Fortunately a number of style rules have been created by Kieras
(1988 and 1990) for his NGOMSL notation system which mimics those style rules which

are applied to traditional production rule system development.

These NGOMSL style rule guidelines when applied to cognitive task descriptions
produce models from which the necessary training time and transfer time predictions can
be made, without the need for a strict production rule notation form. Therefore, these

style rules which are adapted from those applied to formal production rule notation can be

114

applied with greater ease to attain the objective of predicting execution time, training time

and transfer time.

Practical Benefits Relative to Manpower, Personnel and Training

There are a number of practical benefits which can result from a capability which
predicts time to learn. First, in the development of new military systems, the cost to
deploy such systems in part is determined by the cost to train individuals to expertly use a
system. This cost to train translates into the time required to train an individual to a
required level of expertise. Consequently when establishing a budget for system
deployment and the life cycle cost for new systems, the cost to train users can be reliably
predicted. Second, differences between two alternative designs of a system which
accomplish the same mission can be assessed in terms of the difficulty which will be
encountered in learning to operate the alternatives. This assessment can be used in the
decision process when making a choice between the alternative options. Third, in the
conduct of a job analysis, it is important to determine what tasks are most compatible such
that they may be grouped together in job descriptions. Furthermore, it is important to
determine what personnel with prior task experience can most easily transfer their
knowledge between jobs and job tasks. The training time prediction capability which is
proposed could be used for such purposes since the analysis to determine training time
examines the similarity between knowledge unsts within a specific task, as well as, between
different tasks. The greater the similarity between knowledge units, the greater the
transfer and the lesser the training time required to master the task(s). Therefore, the
ability to predict training time or learning difficulty has a number of practical benefits for
selecting between alternative system designs, establishing the degree of transfer between

tasks, planning and budgeting manpower training costs and for job design.

115

Acknowledgment

The author wishes to acknowledge Dr. Stanley Collyer and Dr. Susan Chipman of the
Office of Naval Research for their support and enthusiasm for this project.

116

[

SR R N I AN BN S B GE G BN B e GE D R aE Em e

References:

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard
University Press.

Anderson, J. R, Kline, P J. and Beasley, C. M. (1980). Complex learning processes. In
R E. Snow, P. A. Federico, and W. S. Montague (Ed), Aptitude, learning and instruction:
Cognitive process analyses. Hillsdale, N. J: Lawrence Erlbaum Associates.

Anderson, J. R, Greeno, J. G, Kline, P. J,, and Neves, D. M. (1981). Acquisition of
Problem Solving Skill. InJ. R. Anderson (Ed) Cognitive Skills and Their Acquisition.
Hillsdale, N. J. Eribaum.

Anderson, J. R., Conrad, F. G, and Corbett, A. J. (1989). Skill acquisi*' >n and the LISP
tutor. Cognitive Science 13, 476-505.

Bovair, S, Kieras, D. E., and Polson, P. G, (1990). The acquisition and performance of
text-editing skill: A cognitive complexity analysis. Human Computer Interaction 5, 1-48.

Card, S., Moran, T. P, and Newell, A. (1983). The Psychology of Human-Computer
Interaction. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Chi, M. T. H, Bassock, M., Lewis, M. W, Reimann, P., and Glaser, R. (1989). Self
explanation. How students study and use examples in learning to solve problems.
Cognitive Science 13, 145-182.

Corbett, A. T., and Anderson, J. R. (1989, May). The LISP intelligent tutoring system:
Research in skill acquisition. In Proceedings of the 4th International Conference in
Artificial Intelligence in Education (pp. 64-72) Amsterdam.

Gray, W. D, John, B. E., and Atwood, M. E, (1992). The process of Project Ernestine
or an overview of a vahdatlon of GOMS. Proceedmgs of CHI'92. ACM, New York.

John, B. E., (1990). Extensions of GOMS analysis to expert performance requiring
perception of dynamic visual and auditory information. Proceedings of CHI' 1990 ACM,
New York, 107-115.

117

Kieras, D. E., and Polson, P. G. (1985). An approach to the formal analysis of user
complexity. International Journal of Man - Machine Studies 22, 355-394.

Kieras, D. E., and Bovair, S. (1986). The acquisition of procedures from text: A
production-system analysis of transfer of training. Journal of Memory and Language, 25,
507-524.

Kieras, D. E., (1988). Towards a practical GOMS model methodology for user interface
design. In Hilander (Ed) Handbook of Human Computer Interaction. Elsevier: North
Holland, 135-157.

Kieras, D. E. (1991). A guide to GOMS task analysis. Computer-Human Interaction
(CAI)91, Tutorial.

Kieras, D. E., and Meyer, D. E. (1992). EPIC: A human information-processing
architecture with application to multiple-task performance. Computer-Human Interaction
(CHI) September.

Klahr, D., Langley, P., and Neches, R. (1987). Production Systems Models of Learning
and Development. Cambridge, MA: The MIT Press.

Langley, P., Simon, H. A, Bradshaw, G. L., and Zytkow, J. M. (1987) Scientific
Discovery: Computational explanations of the creative process. Cambridge, MA: The
MIT Press.

Miyake, N. (1986). Constructive interactive and the interactive process of understanding.
Cognitive Science, 10, 151-177.

Neves, D. M., and Anderson, J. R. (1991). Knowledge compilation: Mechanisms for the
automation of cognitive skills. InJ. R. Anderson (Ed) Cognitive Skills and Their
Acquisition. Hillsdale, N. J: Erlbaum.

Newell, A, and Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, N.J:
Prentice-Hall.

Newell, A. (1973). Production Systems: Models of control structures. In W. G. Chase
(Ed). Visual Information Processing. New York: Academic Press, 463-562.

118

[pm——

[----------

Peck, V. A, and John, B. E. (1992). Browser-Soar: A computational model of a highly
interactive task. In P. Bauersfeld, J. Bennett and G. Lynch (Eds) CHI'S2 Conference
Proceedings, ACM, New York.

Polson, P. G. (1986). A quantitative theory of human-computer interaction. In Carroll
(Ed) Interfacing Thought: Cognitive Aspects of Human Computer Interaction.
Cambridge, MA: The MIT Press.

Qin, Y., and Simon, H. A. (1990). Laboratory replication of scientific discovery
processes. Cognitive Science, 14, 281-312.

Simon, H. A. (1978). On the forms of mental representation. In C. W. Savage (Ed),
Perception and Cognition: Issues in the Foundations of Psychology. Minneapolis:
University of Minnesota Press.

Singley, K., and Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA:
Harvard Press.

Thagard, P. (1992). Adversarial problem solving: Modeling an opponent. Cognitive
Science 16, 123-151.

VanLehn, K., Jones, R. M., and Chi, M.T.H. (1991). Modeling the self explanation effect
with Cascade 3. In Hammond and Gentner (Ed). Proceedings of the Thirteenth Annual
Conference of the Cognitive Science Society. Hillsdale, N. J: Erlbaum.

Williams, K. E., Reynolds, R. E., Carolan, T. F., Anglin, P. D. and Shrestha, L. B. (1950).
An evaluation of a methodology for cognitively structuring and adaptively sequencing
exercise content for embedded training. TR89-035, Cognitive Science Program, Office of
Naval Research, Arlington, Virginia.

Williams, K. E. and Reynolds, R. E. (1991). The acquisition of cognitive simulation
models: A knowledge-based training approach. In Fishwick and Modjeski (Ed),
Knowledge-Based Simulation: Methodology and Application. New York: Springer-
Verlag.

Williams, K. E. and Kotnour, T. (1993). Knowledge Acquisition: A review of manual,
machine aided and machine learning methodologies. Office of Naval Research Interim
Technical Report, Contract #N00014-91-J-5-1500.

119

REPORT DISTRIBUTION LIST

Dr. John R. Anderson
Department of Psychology
Carnegie Mellon University
Schenley Park

Pittsburgh, PA 15213

Dr. William J. Clancey

Institute for Research on Learning
2550 Hanover Street

Paio Alto, CA 94304

Dr. Albert T. Corbett
Department of Psychology
Carnegie-Mellon University
Pittsburgh. PA 15213

Dr. Michael Drillings

Basic Research Office

Army Research Institute
5001 Eisenhower Avenue
Alexandra, VA 22333-5600

Dr. Helen Gigley

Naval Research Lab Code 5530
4555 Overlook Avenue, SW
Washington, DC 20375-5000

Dr. Robert Glaser

LRDC University of Pittsburgh
3939 Ohara Street

Pittsburgh, PA 15260

Professor Joseph Goguen
PRG University of Oxford
11 Keble Road

Oxford OX13QD

United Kingdom

Dr. Sherrie Gott
AFHRLMOMI}
Brooks AFB, TX 78235-5601

Dr. T. Govindaraj

GA Institute of Tech

School of Industrial & Systems Engineering
Atlanta, GA 303320205

Dr. Marilyn K. Gowing

Office of Personnel R&D

1900 E St.. NW Room 6462
Office of Personnel Management

Washington, DC 20415

Dr. James G. Greeno
School of Education
Stanford University
Room 311

Stanford. CA 94305

Dr. Barbara Hayes-Roth
Knowledge Systems Lab
Stanford University

701 Welch Road. Bldg. C
Palo Alto, CA 94304

Dr. Edgar M. Johnson
Technical Director

U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

Dr. David Kieras

Technical Communication Program
Tidal Bidg., 2360 Bonisteel Blvd.
University of Michigan

Ann Arbor, MI 48109-2108

Dr. Walter Kintsch
Department of Psychology
University of Colorado
Boulder. CO 80309-0345

Dr. Susan S. Kirschenbaum

Code 2212, Bldg. 11711

Naval Underwater Systems Center
Newport. RI 02841

Dr. Janet L. Kolodner
GA Institute of Tech
College of Computing
Atlanta, GA 30332-0280

Dr. Ryszard S. Michalski
Center for Artificial Intelligence
George Mason University
Science and Tech I, Room 411
4400 University Drive

Fairfax. VA 22030-4444

Dr. Andrew R. Mol..ar

Applications of Advinced Technologies, Rm. 635
National Science Foundation

Washington. DC 20550

Dr. Ben B. Morgan, Jr.
Department of Psychology
University of Central Florida
Orlando, FL 32816-0150

Dr. Stellan Ohlsson
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Institute for the Learning Sciences
Northwestern University

1890 Maple Avenue

Evanston, IL 60201

Dr. Peter Pirolli

School of Education
University of California
Berkeley, CA 94720

Dr. Martha Polson
Department of Psychology
University of Colorado
Boulder, CO 80309-0344

Dr. Peter Polson
University of Colorado
Department of Psychology
Boulder. CO 80309-0344

Dr. Fred Reif

CDEC Smith Hall
Carnegie-Melilon University
Pittsburg. PA 15213

Dr. Charles M. Reigeluth

Chairman, Instructional Systems Technology
School of Education, Rm. 210

Indiana University

Bloomington, IN 47405

Dr. Gil¥ert Ricard

Mail Stop K01-14
Grumman Aircraft Systems
Bethpage. NY 11714

Mr. W. A, Rizzo

Head, Human Factors Division
Naval Training Systems Center
Code 26

12350 Research Parkway

Orlando, FL 32826-3224

Dr. Michael G. Shafto

NASA Ames Research Center
Mail Stop 262-1

Moffett Field, CA 94035-1000

Dr. Derek Sleeman

Computing Science Department
The University

Aberdeen AB9 2FX

Scotland United Kingdom

David Smith

NRAD Building 54

2717 Catalina Blvd.

San Diego. CA 92152-5000

Dr. Douglas Towne

Behavioral Technology Labs
University of Southern California
1228 Spring Street

St. Helena, CA 94574

Dr. Wallace Wulfeck 11t
Navy Personnel R&D Center
Code 51

San Diego, CA 92152-6800

